Java performance is far from being trivial to benchmark because it is affected by various factors such as the Java application, its input, the virtual machine, the garbage collector, the heap size, etc. In addition, non-determinism at run-time causes the execution time of a Java program to differ from run to run. There are a number of sources of non-determinism such as Just-In-Time (JIT) compilation and optimization in the virtual machine (VM) driven by timerbased method sampling, thread scheduling, garbage collection, and various system effects.There exist a wide variety of Java performance evaluation methodologies used by researchers and benchmarkers. These methodologies differ from each other in a number of ways. Some report average performance over a number of runs of the same experiment; others report the best or second best performance observed; yet others report the worst. Some iterate the benchmark multiple times within a single VM invocation; others consider multiple VM invocations and iterate a single benchmark execution; yet others consider multiple VM invocations and iterate the benchmark multiple times. This paper shows that prevalent methodologies can be misleading, and can even lead to incorrect conclusions. The reason is that the data analysis is not statistically rigorous. In this paper, we present a survey of existing Java performance evaluation methodologies and discuss the importance of statistically rigorous data analysis for dealing with non-determinism. We advocate approaches to quantify startup as well as steady-state performance, and, in addition, we provide the JavaStats software to automatically obtain performance numbers in a rigorous manner. Although this paper focuses on Java performance evaluation, many of the issues addressed in this paper also apply to other programming languages and systems that build on a managed runtime system.
Java performance is far from being trivial to benchmark because it is affected by various factors such as the Java application, its input, the virtual machine, the garbage collector, the heap size, etc. In addition, non-determinism at run-time causes the execution time of a Java program to differ from run to run. There are a number of sources of non-determinism such as Just-In-Time (JIT) compilation and optimization in the virtual machine (VM) driven by timerbased method sampling, thread scheduling, garbage collection, and various system effects.There exist a wide variety of Java performance evaluation methodologies used by researchers and benchmarkers. These methodologies differ from each other in a number of ways. Some report average performance over a number of runs of the same experiment; others report the best or second best performance observed; yet others report the worst. Some iterate the benchmark multiple times within a single VM invocation; others consider multiple VM invocations and iterate a single benchmark execution; yet others consider multiple VM invocations and iterate the benchmark multiple times. This paper shows that prevalent methodologies can be misleading, and can even lead to incorrect conclusions. The reason is that the data analysis is not statistically rigorous. In this paper, we present a survey of existing Java performance evaluation methodologies and discuss the importance of statistically rigorous data analysis for dealing with non-determinism. We advocate approaches to quantify startup as well as steady-state performance, and, in addition, we provide the JavaStats software to automatically obtain performance numbers in a rigorous manner. Although this paper focuses on Java performance evaluation, many of the issues addressed in this paper also apply to other programming languages and systems that build on a managed runtime system.
Abstract. To realise an Ambient Intelligence environment, it is paramount that applications can dispose of information about the context in which they operate, preferably in a very general manner. For this purpose various types of information should be assembled to form a representation of the context of the device on which aforementioned applications run. To allow interoperability in an Ambient Intelligence environment, it is necessary that the context terminology is commonly understood by all participating devices. In this paper we propose an adaptable and extensible context ontology for creating context-aware computing infrastructures, ranging from small embedded devices to high-end service platforms. The ontology has been designed to solve several key challenges in Ambient Intelligence, such as application adaptation, automatic code generation and code mobility, and generation of device specific user interfaces.
A key challenge in benchmarking is to predict the performance of an application of interest on a number of platforms in order to determine which platform yields the best performance. This paper proposes an approach for doing this. We measure a number of microarchitecture-independent characteristics from the application of interest, and relate these characteristics to the characteristics of the programs from a previously profiled benchmark suite. Based on the similarity of the application of interest with programs in the benchmark suite, we make a performance prediction of the application of interest. We propose and evaluate three approaches (normalization, principal components analysis and genetic algorithm) to transform the raw data set of microarchitecture-independent characteristics into a benchmark space in which the relative distance is a measure for the relative performance differences. We evaluate our approach using all of the SPEC CPU2000 benchmarks and real hardware performance numbers from the SPEC website. Our framework estimates per-benchmark machine ranks with a 0.89 average and a 0.80 worst case rank correlation coefficient.
We introduce the usage of hardware performance counters (HPCs) as a new method that allows very precise access to known side channels and also allows access to many new side channels. Many current architectures provide hardware performance counters, which allow the profiling of software during runtime. Though they allow detailed profiling they are noisy by their very nature; HPC hardware is not validated along with the rest of the microprocessor. They are meant to serve as a relative measure and are most commonly used for profiling software projects or operating systems. Furthermore they are only accessible in restricted mode and can only be accessed by the operating system. We discuss this security model and we show first implementation results, which confirm that HPCs can be used to profile relatively short sequences of instructions with high precision. We focus on cache profiling and confirm our results by rerunning a recently published time based cache attack in which we replaced the time profiling function by HPCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.