In patients with FA, there is a high incidence of aggressive HNSCC at a young age. Surgery remains the mainstay of treatment because patients with FA tolerate radiation therapy and chemotherapy poorly, with significant morbidity. An increased understanding of FA-associated malignancies is not only important in the clinical management of patients with FA but can also elucidate the role of chromosomal instability in the development of HNSCC in general.
Interactions between the p53 and PI3K/AKT pathways play a significant role in the determination of cell death/survival. In benign cells these pathways are interrelated through the transcriptional regulation of PTEN by p53, which is required for p53-mediated apoptosis. PTEN exerts its effects by decreasing the phosphorylated AKT fraction, thereby diminishing prosurvival activities. However, the link between these pathways in cancer is not known. In this study, PIK3CA, encoding the p110␣ catalytic subunit of PI3K, is identified as an oncogene involved in upper aerodigestive tract (UADT) carcinomas. Simultaneous abnormalities in both pathways are rare in primary tumors, suggesting that amplification of PIK3CA and mutation of p53 are mutually exclusive events and either event is able to promote a malignant phenotype. Moreover, the negative effect of p53 induction on cell survival involves the transcriptional inhibition of PIK3CA that is independent of PTEN activity, as PTEN is not expressed in the primary tumors. Conversely, constitutive activation of PIK3CA results in resistance to p53-related apoptosis in PTEN deficient cells. Thus, p53 regulates cell survival by inhibiting the PI3K/AKT prosurvival signal independent of PTEN in epithelial tumors. This inhibition is required for p53-mediated apoptosis in malignant cells.
Fanconi anemia is an autosomal recessive disorder characterized by congenital malformations, bone marrow failure, and the development of squamous cell carcinomas (SCCs) and other cancers. Recent clinicopathologic evidence has raised the possibility that an environmental factor such as human papillomavirus (HPV) may be involved in the pathogenesis of SCCs in Fanconi anemia patients. Given the high prevalence of p53 mutations in SCCs among the general population and the lack of p53 mutations in HPV-related carcinogenesis, we evaluated the role of HPV and p53 mutations and polymorphisms in SCC from Fanconi anemia patients. We used polymerase chain reaction (PCR) screening and real-time PCR to detect and quantify HPV DNA in DNA extracted from microdissected SCCs obtained from 24 Fanconi anemia patients (n = 25 SCCs; case subjects) and 50 age-, sex-, and tumor site-matched SCC patients without Fanconi anemia (n = 50 SCCs; control subjects). We PCR-amplified and sequenced exons 4-9 of the p53 gene from SCC DNA. We detected HPV DNA in 84% of the SCC specimens from the case subjects and in 36% of the SCC specimens from the control subjects (P<.001). The prevalence of p53 mutations in SCCs from the case subjects (0%, 0/25) was statistically significantly lower than that of SCCs from the control subjects (36%, 12/33; P<.001). A greater proportion of patients with Fanconi anemia and SCC were homozygous for Arg72, a p53 polymorphism that may be associated with increased risk for HPV-associated human malignancies, than an ethnically-matched cohort of Fanconi anemia patients without SCC (75% versus 51%; P =.05). These data suggest that Fanconi anemia is associated with increased susceptibility to HPV-induced carcinogenesis.
The combination of conventional and modified CGH analyses facilitates the identification of DNA copy number changes that might be involved in the development of a metastatic phenotype. Future research should aim at the identification of the genes involved at the identified sites of chromosomal aberration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.