A change in the cutoff age in the current AJCC/UICC staging system from 45 years to 55 years would lead to a downstaging of 12% of patients, and would improve the statistical validity of the model. Such a change would be clinically relevant for thousands of patients worldwide by preventing overstaging of patients with low-risk disease while providing a more realistic estimate of prognosis for those who remain high risk.
Several lines of evidence suggest that follicular cellderived thyroid cancers represent a continuum of disease that progresses from the highly curable welldifferentiated thyroid cancers to the universally fatal anaplastic cancers. However, the genetic mechanisms underlying thyroid cancer progression remain ill defined. We compared the molecular-cytogenetic profiles derived from comparative genomic hybridization (CGH) analysis of major histological variants of thyroid cancer to define genetic variables associated with progression. Overall, a sequential increase in chromosomal complexity was observed from welldifferentiated papillary thyroid cancer to poorly differentiated and anaplastic carcinomas, both in terms of the presence of CGH detectable abnormalities (P ؍ 0.003) and the median number of abnormalities per case (P < 0.001). The presence of multiple abnormalities common to all thyroid cancer variants, including gains of 5p15, 5q11-13, 19p, and 19q and loss of 8p, suggests that these tumors are derived from a common genetic pathway. Gains of 1p34 -36, 6p21, 9q34, 17q25, and 20q and losses of 1p11-p31, 2q32-33, 4q11-13, 6q21, and 13q21-31 may represent secondary events in progression, as they were only detected in poorly differentiated and anaplastic carcinomas. Finally, recurrent gains at 3p13-14 and 11q13, and loss of 5q11-31 were unique to anaplastic carcinomas, suggesting they may be markers for anaplastic transformation. Our data suggests that the development of chromosomal instability underlies the progression to more aggressive phenotypes of thyroid cancer and sheds light on the possible genomic aberrations that may be selected for during this process.
Fanconi anemia is an autosomal recessive disorder characterized by congenital malformations, bone marrow failure, and the development of squamous cell carcinomas (SCCs) and other cancers. Recent clinicopathologic evidence has raised the possibility that an environmental factor such as human papillomavirus (HPV) may be involved in the pathogenesis of SCCs in Fanconi anemia patients. Given the high prevalence of p53 mutations in SCCs among the general population and the lack of p53 mutations in HPV-related carcinogenesis, we evaluated the role of HPV and p53 mutations and polymorphisms in SCC from Fanconi anemia patients. We used polymerase chain reaction (PCR) screening and real-time PCR to detect and quantify HPV DNA in DNA extracted from microdissected SCCs obtained from 24 Fanconi anemia patients (n = 25 SCCs; case subjects) and 50 age-, sex-, and tumor site-matched SCC patients without Fanconi anemia (n = 50 SCCs; control subjects). We PCR-amplified and sequenced exons 4-9 of the p53 gene from SCC DNA. We detected HPV DNA in 84% of the SCC specimens from the case subjects and in 36% of the SCC specimens from the control subjects (P<.001). The prevalence of p53 mutations in SCCs from the case subjects (0%, 0/25) was statistically significantly lower than that of SCCs from the control subjects (36%, 12/33; P<.001). A greater proportion of patients with Fanconi anemia and SCC were homozygous for Arg72, a p53 polymorphism that may be associated with increased risk for HPV-associated human malignancies, than an ethnically-matched cohort of Fanconi anemia patients without SCC (75% versus 51%; P =.05). These data suggest that Fanconi anemia is associated with increased susceptibility to HPV-induced carcinogenesis.
Background An objective definition of clinically relevant extracapsular nodal spread (ECS) in head and neck squamous cell carcinoma (SCC) is unavailable. Methods Pathologic review of 245 pathologically positive oral cavity SCC neck dissection specimens was performed. The presence/absence of ECS, its extent (in millimeters), and multiple nodal and primary tumor risk factors were related to disease-specific survival (DSS) at a follow-up of 73 months. Results ECS was detected in 109 patients (44%). DSS was significantly better for patients without ECS than patients with ECS. Time-dependent receiver operator curve (ROC) analysis identified a prognostic cutoff for ECS extent at 1.7 mm. In multivariate analyses, DSS was significantly lower for patients with major ECS compared with patients with minor ECS, but not significantly different between patients with minor ECS and patients without ECS. Conclusion ECS is clinically relevant in oral cavity SCC when it has extended more than 1.7 mm beyond the nodal capsule.
Clinicopathological variables used at present for prognostication and treatment selection for papillary thyroid carcinomas (PTCs) do not uniformly predict tumor behavior, necessitating identification of novel prognostic markers. Complicating the assessment is the long natural history of PTC and our rudimentary knowledge of its genetic composition. In this study we took advantage of differences in clinical behavior of two distinct variants of PTC, the aggressive tall-cell variant (TCV) and indolent conventional PTC (cPTC), to identify molecular prognosticators of outcome using complementary genome wide analyses. Comparative genome hybridization (CGH) and cDNA microarray (17,840 genes) analyses were used to detect changes in DNA copy number and gene expression in pathological cPTC and TCV. The findings from CGH and cDNA microarray analyses were correlated and validated by real-time PCR and immunohistochemical analyses on a series of 100 cases of cPTC and TCV. Genes identified by this approach were evaluated as prognostic markers in cPTC by immunohistochemistry on tissue arrays. CGH identified significant differences in the presence (76 versus 27%; P ؍ 0.001) and type of DNA copy number aberrations in TCV compared with cPTC. Recurrent gains of 1p34 -36, 1q21, 6p21-22, 9q34, 11q13, 17q25, 19, and 22 and losses of 2q21-31, 4, 5p14-q21, 6q11-22, 8q11-22, 9q11-32, and 13q21-31 were unique to TCV. Hierarchical clustering of gene expression profiles revealed significant overlap between TCV and cPTC, but further analysis identified 82 dysregulated genes differentially expressed among the PTC variants. Of these, MUC1 was of particular interest because amplification of 1q by CGH correlated with MUC1 amplification by real-time PCR analysis and protein overexpression by immunohistochemistry in TCV (P ؍ 0.005). Multivariate analysis revealed a significant association between MUC1 overexpression and treatment outcome, independent of histopathological categorization (P ؍ 0.03). Analysis of a validation series containing a matched group of aggressive and indolent cPTCs confirmed the association between MUC1 overexpression and survival (relative risk, 2.3; 95% confidence interval, 1.1-5.5; P ؍ 0.03). Our data suggest that MUC1 dysregulation is associated with aggressive behavior of PTC and may serve as a prognostic marker and potential therapeutic target in this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.