Modulation of the acetylation state of histones plays a pivotal role in the regulation of gene expression. Histone deacetylases (HDACs) catalyze the removal of acetyl groups from lysines near the N termini of histones. This reaction promotes the condensation of chromatin, leading to repression of transcription. HDAC deregulation has been linked to several types of cancer, suggesting a potential use for HDAC inhibitors in oncology. Here we describe the first crystal structures of a human HDAC: the structures of human HDAC8 complexed with four structurally diverse hydroxamate inhibitors. This work sheds light on the catalytic mechanism of the HDACs, and on differences in substrate specificity across the HDAC family. The structure also suggests how phosphorylation of Ser39 affects HDAC8 activity.
Human GPR40 receptor (hGPR40), also known as free fatty-acid receptor 1 (FFAR1), is a G-protein-coupled receptor that binds long-chain free fatty acids to enhance glucose-dependent insulin secretion. Novel treatments for type-2 diabetes mellitus are therefore possible by targeting hGPR40 with partial or full agonists. TAK-875, or fasiglifam, is an orally available, potent and selective partial agonist of hGPR40 receptor, which reached phase III clinical trials for the potential treatment of type-2 diabetes mellitus. Data from clinical studies indicate that TAK-875, which is an ago-allosteric modulator of hGPR40 (ref. 3), demonstrates improved glycaemic control and low hypoglycaemic risk in diabetic patients. Here we report the crystal structure of hGPR40 receptor bound to TAK-875 at 2.3 Å resolution. The co-complex structure reveals a unique binding mode of TAK-875 and suggests that entry to the non-canonical binding pocket most probably occurs via the lipid bilayer. The atomic details of the extensive charge network in the ligand binding pocket reveal additional interactions not identified in previous studies and contribute to a clear understanding of TAK-875 binding to the receptor. The hGPR40-TAK-875 structure also provides insights into the plausible binding of multiple ligands to the receptor, which has been observed in radioligand binding and Ca(2+) influx assay studies. Comparison of the transmembrane helix architecture with other G-protein-coupled receptors suggests that the crystallized TAK-875-bound hGPR40 complex is in an inactive-like state.
Aberrant signaling of ErbB family members human epidermal growth factor 2 (HER2) and epidermal growth factor receptor (EGFR) is implicated in many human cancers, and HER2 expression is predictive of human disease recurrence and prognosis. Small molecule kinase inhibitors of EGFR and of both HER2 and EGFR have received approval for the treatment of cancer. We present the first high resolution crystal structure of the kinase domain of HER2 in complex with a selective inhibitor to understand protein activation, inhibition, and function at the molecular level. HER2 kinase domain crystallizes as a dimer and suggests evidence for an allosteric mechanism of activation comparable with previously reported activation mechanisms for EGFR and HER4. A unique Gly-rich region in HER2 following the ␣-helix C is responsible for increased conformational flexibility within the active site and could explain the low intrinsic catalytic activity previously reported for HER2. In addition, we solved the crystal structure of the kinase domain of EGFR in complex with a HER2/EGFR dual inhibitor (TAK-285). Comparison with previously reported inactive and active EGFR kinase domain structures gave insight into the mechanism of HER2 and EGFR inhibition and may help guide the design and development of new cancer drugs with improved potency and selectivity.
Fibroblast activation protein ␣ (FAP␣) is highly expressed in epithelial cancers and has been implicated in extracellular matrix remodeling, tumor growth, and metastasis. We present the first high resolution structure for the apoenzyme as well as kinetic data toward small dipeptide substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.