Evolutionary robotics is heading towards fully embodied evolution in real-time and real-space. In this paper we introduce the Triangle of Life, a generic conceptual framework for such systems in which robots can actually reproduce. This framework can be instantiated with different hardware approaches and different reproduction mechanisms, but in all cases the system revolves around the conception of a new robot organism. The other components of the Triangle capture the principal stages of such a system; the Triangle as a whole serves as a guide for realizing this anticipated breakthrough and building systems where robot morphologies and controllers can evolve in real-time and real-space. After discussing this framework and the corresponding vision, we present a case study using the SYMBRION research project that realized some fragments of such a system in modular robot hardware.
Abstract-A novel approach to hardware fault tolerance is demonstrated that takes inspiration from the human immune system as a method of fault detection. The human immune system is a remarkable system of interacting cells and organs that protect the body from invasion and maintains reliable operation even in the presence of invading bacteria or viruses. This paper seeks to address the field of electronic hardware fault tolerance from an immunological perspective with the aim of showing how novel methods based upon the operation of the immune system can both complement and create new approaches to the development of fault detection mechanisms for reliable hardware systems. In particular, it is shown that by use of partial matching, as prevalent in biological systems, high fault coverage can be achieved with the added advantage of reducing memory requirements. The development of a generic finite-state-machine immunization procedure is discussed that allows any system that can be represented in such a manner to be "immunized" against the occurrence of faulty operation. This is demonstrated by the creation of an immunized decade counter that can detect the presence of faults in real time.
It is clear to all, after a moments thought, that nature has much we might be inspired by when designing our systems, for example: robustness, adaptability and complexity, to name a few. The implementation of bio-inspired systems in hardware has however been limited, and more often than not been more a matter of artistry than engineering. The reasons for this are many, but one of the main problems has always been the lack of a universal platform, and of a proper methodology for the implementation of such systems. The ideas presented in this paper are early results of a new research project, "Reconfigurable POEtic Tissue". The goal of the project is the development of a hardware platform capable of implementing systems inspired by all the three major axes (phylogenesis, ontogenesis, and epigenesis) of bio-inspiration, in digital hardware.
The long term vision of the Autonomous Robot Evolution (ARE) project is to create an ecosystem of both virtual and physical robots with evolving brains and bodies. One of the major challenges for such a vision is the need to construct many unique individuals without prior knowledge of what designs evolution will produce. To this end, an autonomous robot fabrication system for evolutionary robotics, the Robot Fabricator, is introduced in this paper. Evolutionary algorithms can create robot designs without direct human interaction; the Robot Fabricator will extend this to create physical copies of these designs (phenotypes) without direct human interaction. The Robot Fabricator will receive genomes and produce populations of physical individuals that can then be evaluated, allowing this to form part of the evolutionary loop, so robotic evolution is not confined to simulation and the reality gap is minimised. In order to allow the production of robot bodies with the widest variety of shapes and functional parts, individuals will be produced through 3D printing, with prefabricated actuators and sensors autonomously attached in the positions determined by evolution. This paper presents details of the proposed physical system, including a proof-ofconcept demonstrator, and discusses the importance of considering the physical manufacture for evolutionary robotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.