This survey explores Procedural Content Generation via Machine Learning (PCGML), defined as the generation of game content using machine learning models trained on existing content. As the importance of PCG for game development increases, researchers explore new avenues for generating high-quality content with or without human involvement; this paper addresses the relatively new paradigm of using machine learning (in contrast with search-based, solver-based, and constructive methods). We focus on what is most often considered functional game content such as platformer levels, game maps, interactive fiction stories, and cards in collectible card games, as opposed to cosmetic content such as sprites and sound effects. In addition to using PCG for autonomous generation, co-creativity, mixed-initiative design, and compression, PCGML is suited for repair, critique, and content analysis because of its focus on modeling existing content. We discuss various data sources and representations that affect the generated content. Multiple PCGML methods are covered, including neural networks: long short-term memory (LSTM) networks, autoencoders, and deep convolutional networks; Markov models: n-grams and multi-dimensional Markov chains; clustering; and matrix factorization. Finally, we discuss open problems in PCGML, including learning from small datasets, lack of training data, multi-layered learning, style-transfer, parameter tuning, and PCG as a game mechanic.
Hanabi is a cooperative card game with hidden information that has won important awards in the industry and received some recent academic attention. A two-track competition of agents for the game will take place in the 2018 CIG conference. In this paper, we develop a genetic algorithm that builds rulebased agents by determining the best sequence of rules from a fixed rule set to use as strategy. In three separate experiments, we remove human assumptions regarding the ordering of rules, add new, more expressive rules to the rule set and independently evolve agents specialized at specific game sizes. As result, we achieve scores superior to previously published research for the mirror and mixed evaluation of agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.