Hanabi is a cooperative card game with hidden information that has won important awards in the industry and received some recent academic attention. A two-track competition of agents for the game will take place in the 2018 CIG conference. In this paper, we develop a genetic algorithm that builds rulebased agents by determining the best sequence of rules from a fixed rule set to use as strategy. In three separate experiments, we remove human assumptions regarding the ordering of rules, add new, more expressive rules to the rule set and independently evolve agents specialized at specific game sizes. As result, we achieve scores superior to previously published research for the mirror and mixed evaluation of agents.
In complex scenarios where a model of other actors is necessary to predict and interpret their actions, it is often desirable that the model works well with a wide variety of previously unknown actors. Hanabi is a card game that brings the problem of modeling other players to the forefront, but there is no agreement on how to best generate a pool of agents to use as partners in ad-hoc cooperation evaluation. This paper proposes Quality Diversity algorithms as a promising class of algorithms to generate populations for this purpose and shows an initial implementation of an agent generator based on this idea. We also discuss what metrics can be used to compare such generators, and how the proposed generator could be leveraged to help build adaptive agents for the game.
This article outlines what we learned from the first year of the AI Settlement Generation Competition in Minecraft, a competition about producing AI programs that can generate interesting settlements in Minecraft for an unseen map. This challenge seeks to focus research into adaptive and holistic procedural content generation. Generating Minecraft towns and villages given existing maps is a suitable task for this, as it requires the generated content to be adaptive, functional, evocative and aesthetic at the same time. Here, we present the results from the first iteration of the competition. We discuss the evaluation methodology, present the different technical approaches by the competitors, and outline the open problems.
We propose the following question: what gamelike interactive system would provide a good environment for measuring the impact and success of a co-creative, cooperative agent? Creativity is often formulated in terms of novelty, value, surprise and interestingness. We review how these concepts are measured in current computational intelligence research and provide a mapping from modern electronic and tabletop games to open research problems in mixed-initiative systems and computational co-creativity. We propose application scenarios for future research, and a number of metrics under which the performance of cooperative agents in these environments will be evaluated.
Models of intrinsic motivation present an important means to produce sensible behaviour in the absence of extrinsic rewards. Applications in video games are varied, and range from intrinsically motivated general game-playing agents to non-player characters such as companions and enemies. The information-theoretic quantity of Empowerment is a particularly promising candidate motivation to produce believable, generic and robust behaviour. However, while it can be used in the absence of external reward functions that would need to be crafted and learned, empowerment is computationally expensive. In this paper, we propose a modified UCT tree search method to mitigate empowerment's computational complexity in discrete and deterministic scenarios. We demonstrate how to modify a Monte-Carlo Search Tree with UCT to realise empowerment maximisation, and discuss three additional modifications that facilitate better sampling. We evaluate the approach both quantitatively, by analysing how close our approach gets to the baseline of exhaustive empowerment computation with varying amounts of computational resources, and qualitatively, by analysing the resulting behaviour in a Minecraft-like scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.