We consider an optimization design for the alpha power exponential (APE) distribution as asymmetrical probability distributions under progressive type-I censoring for a step-stress accelerated life test. In this study, two stress variables are taken into account. To save the time and cost of lifetime testing, progressive censoring and accelerated life testing are utilized. The test units’ lifespans are supposed to follow an APE distribution. A cumulative exposure model is used to study the impact of varying stress levels. A log-linear relationship between the APE distribution’s scale parameter and stress is postulated. The maximum likelihood estimators, Bayesian estimators of the model parameters based on the symmetric loss function, approximate confidence intervals (CIs) and credible intervals are provided. Under normal operating conditions, an ideal test plan is designed by minimizing the asymptotic variance of the percentile life.
It is extremely frequent for systems to fail in their demanding operating environments in many real-world contexts. When systems reach their lowest, highest, or both extreme operating conditions, they usually fail to perform their intended functions, which is something that researchers pay little attention to. The goal of this paper is to develop inference for multi-reliability using unit alpha power exponential distributions for stress–strength variables based on the progressive first failure. As a result, the problem of estimating the stress–strength function R, where X, Y, and Z come from three separate alpha power exponential distributions, is addressed in this paper. The conventional methods, such as maximum likelihood for point estimation, Bayesian and asymptotic confidence, boot-p, and boot-t methods for interval estimation, are also examined. Various confidence intervals have been obtained. Monte Carlo simulations and real-world application examples are used to evaluate and compare the performance of the various proposed estimators.
It is well known that ranked set sampling (RSS) is more efficient than simple random sampling (SRS). Furthermore, the presence of missing data vitiates the conventional results. Only a minuscule amount of work has been conducted under RSS with missing data. This paper makes a modest attempt to provide some efficient difference- and ratio-type imputation methods in the presence of missing values under RSS. The envisaged imputation methods are demonstrated to provide better results than the existing imputation methods. The theoretical results are enhanced by a computational analysis using real and hypothetically generated symmetric (Normal) and asymmetric (Gamma and Weibull) populations. The computational results show that the proposed imputation method outperforms the existing imputation methods in terms of its higher percent relative efficiency. Additionally, the impact of skewness and kurtosis on the efficiency of the suggested imputation methods has also been calculated.
Evaluating the lifespan distribution of highly reliable commodities under regular use is exceedingly difficult, time consuming, and extremely expensive. As a result of its ability to provide more failure data faster and at a lower experimental cost, accelerated life testing has become increasingly important in life testing studies. In this article, we concentrate on parametric inference for step stress partially life testing utilizing multiple censored data based on the Tampered Random Variable model. Under normal stress circumstances, the lifespan of the experimental units is assumed to follow the Nadarajah–Haghighi distribution, with and being the shape and scale parameters, respectively. Maximum likelihood estimates for model parameters and acceleration factor are developed using multiple censored data. We build asymptotic confidence intervals for the unknown parameters using the observed Fisher information matrix. To demonstrate the applicability of the different methodologies, an actual data set based on the timings of subsequent failures of consecutive air conditioning system failures for each member of a Boeing 720 jet aircraft fleet is investigated. Finally, thorough simulation studies utilizing various censoring strategies are performed to evaluate the estimate procedure performance. Several sample sizes were studied in order to investigate the finite sample features of the considered estimators. According to our numerical findings, the values of mean squared errors and average asymptotic confidence intervals lengths drop as sample size increases. Furthermore, when the censoring level is reduced, the considered estimates of the parameters approach their genuine values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.