Nitrogen (N), the building block of plant proteins and enzymes, is an essential macronutrient for plant functions. A field experiment was conducted to investigate the impact of different N application rates (28, 57, 85, 114, 142, 171, and 200 kg ha −1 ) on the performance of spring wheat (cv. Ujala-2016) during the 2017-2018 and 2018-2019 growing seasons. A control without N application was kept for comparison. Two years mean data showed optimum seed yield (5,461.3 kg ha −1 ) for N-application at 142 kg ha −1 whereas application of lower and higher rates of N did not result in significant and economically higher seed yield. A higher seed yield was obtained in the 2017-2018 (5,595 kg ha −1 ) than in the 2018-2019 (5,328 kg ha −1 ) growing seasons under an N application of 142 kg ha −1 . It was attributed to the greater number of growing degree days in the first (1,942.35°C days) than in the second year (1,813.75°C). Higher rates of N (171 and 200 kg ha −1 ) than 142 kg ha −1 produced more number of tillers (i.e., 948,300 and 666,650 ha −1 , respectively). However, this increase did not contribute in achieving higher yields. Application of 142, 171, and 200 kg ha −1 resulted in 14.15%, 15.0% and 15.35% grain protein concentrations in comparison to 13.15% with the application of 114 kg ha −1 . It is concluded that the application of N at 142 kg ha −1 could be beneficial for attaining higher grain yields and protein concentrations of wheat cultivar Ujala-2016.
Liver cancer (LC), a frequently occurring cancer, has become the fourth leading cause of cancer mortality. The small number of reported data and diverse spectra of pathophysiological mechanisms of liver cancer make it a challenging task and a serious economic burden in health care management. Fumaria indica is a herbaceous annual plant used in various regions of Asia to treat a variety of ailments, including liver cancer. Several in vitro investigations have revealed the effectiveness of F. indica in the treatment of liver cancer; however, the exact molecular mechanism is still unrevealed. In this study, the network pharmacology technique was utilized to characterize the mechanism of F. indica on liver cancer. Furthermore, we analyzed the active ingredient-target-pathway network and uncovered that Fumaridine, Lastourvilline, N-feruloyl tyramine, and Cryptopine conclusively contributed to the development of liver cancer by affecting the MTOR, MAPK3, PIK3R1, and EGFR gene. Afterward, molecular docking was used to verify the effective activity of the active ingredients against the prospective targets. The results of molecular docking predicted that several key targets of liver cancer (along with MTOR, EGFR, MAPK3, and PIK3R1) bind stably with the corresponding active ingredient of F. indica. We concluded through network pharmacology methods that multiple biological processes and signaling pathways involved in F. indica exerted a preventing effect in the treatment of liver cancer. The molecular docking results also provide us with sound direction for further experiments. In the framework of this study, network pharmacology integrated with docking analysis revealed that F. indica exerted a promising preventive effect on liver cancer by acting on liver cancer-associated signaling pathways. This enables us to understand the biological mechanism of the anti liver cancer activity of F. indica.
Deficiencies of essential vitamins, iron (Fe), and zinc (Zn) affect over one-half of the world's population. A significant progress has been made to control micronutrient deficiencies through supplementation, but new approaches are needed, especially to reach the rural poor. Agronomic biofortification of pulses with Zn, Fe, and boron (B) offers a pragmatic solution to combat hidden hunger instead of food fortification and supplementation. Moreover, it also has positive effects on crop production as well. Therefore, we conducted three separate field experiments for two consecutive years to evaluate the impact of soil and foliar application of the aforementioned nutrients on the yield and seed biofortification of mungbean. Soil application of Zn at 0, 4.125, 8.25, Fe at 0, 2.5, 5.0 and B at 0, 0.55, 1.1 kg ha −1 was done in the first, second and third experiment, respectively. Foliar application in these experiments was done at 0.3% Zn, 0.2% Fe and 0.1% B respectively one week after flowering initiation. Data revealed that soil-applied Zn, Fe and B at 8.25, 5.0 and 1.1 kg ha −1 , respectively, enhanced the grain yield of mungbean; however, this increase in yield was statistically similar to that recorded with Zn, Fe and B at 4.125, 2.5 and 0.55 kg ha −1 , respectively. Foliar application of these nutrients at flower initiation significantly enhanced the Zn contents by 28% and 31%, Fe contents by 80% and 78%, while B contents by 98% and 116% over control during 2019 and 2020, respectively. It was concluded from the results that soil application of Zn, Fe, and B enhanced the yield performance of mungbean; while significant improvements in seed Zn, Fe, and B contents were recorded with foliar application of these nutrients.
Obesity caused by a high-fat diet (HFD) affects gut microbiota linked to the risk of type-2 diabetes (T2D). This study evaluates live cells and ethanolic extract (SEL) of Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093 as natural anti-diabetic compounds. In-vitro anti-diabetic effects were determined based on the inhibition of α-glucosidase and α-amylase enzymes. The SEL of Probio65 and Probio-093 significantly retarded α-glucosidase and α-amylase enzymes (p < 0.05). Live Probio65 and Probio-093 inhibited α-glucosidase and α-amylase, respectively (p < 0.05). In mice fed with a 45% kcal high-fat diet (HFD), the SEL and live cells of both strains reduced body weight significantly compared to HFD control (p < 0.05). Probio-093 also improved blood glucose level compared to control (p < 0.05). The gut microbiota modulatory effects of lactobacilli on HFD-induced diabetic mice were analyzed with qPCR method. The SEL and live cells of both strains reduced phyla Deferribacteres compared to HFD control (p < 0.05). The SEL and live cells of Probio-093 promoted more Actinobacteria (phyla), Bifidobacterium, and Prevotella (genus) compared to control (p < 0.05). Both strains exerted metabolic-modulatory effects, with strain Probio-093 showing more prominent alteration in gut microbiota, substantiating the role of probiotics in gut microbiome modulations and anti-diabetic effect. Both lactobacilli are potential candidates to lessen obesity-linked T2D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.