Holistic features capturing global information from robot kinematic data can successfully be used for evaluating surgeon skill in basic surgical tasks on the da Vinci robot. Using the framework presented can potentially allow for real-time score feedback in RMIS training and help surgical trainees have more focused training.
We present an automated framework for visual assessment of the expertise level of surgeons using the OSATS (Objective Structured Assessment of Technical Skills) criteria. Video analysis techniques for extracting motion quality via frequency coefficients are introduced. The framework is tested on videos of medical students with different expertise levels performing basic surgical tasks in a surgical training lab setting. We demonstrate that transforming the sequential time data into frequency components effectively extracts the useful information differentiating between different skill levels of the surgeons. The results show significant performance improvements using DFT and DCT coefficients over known state-of-the-art techniques.
Our evaluations show that frequency features perform better than motion texture features, which in-turn perform better than symbol-/word-based features. Put succinctly, skill classification accuracy is positively correlated with motion granularity as demonstrated by our results on two challenging video datasets.
Automated surgical skills assessment can be achieved with high accuracy using the proposed entropy features. Such a system can significantly improve the efficiency of surgical training in medical schools and teaching hospitals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.