The gigantic complexity and heterogeneity of today's advanced cyber-physical systems and systems of systems is multiplied by the use of avant-garde computing architectures to employ artificial intelligence based autonomy in the system. Here, the overall system's reliability comes along with requirements for fail-safe, fail-operational modes specific to the target applications of the autonomous system and adopted HW architectures. The paper makes an overview of reliability challenges for intelligence implementation in autonomous systems enabled by HW backbones such as neuromorphic architectures, approximate computing architectures, GPUs, tensor processing units (TPUs) and SoC FPGAs.
The Functional Failure Rate analysis of today's complex circuits is a difficult task and requires a significant investment in terms of human efforts, processing resources and tool licenses. Thereby, de-rating or vulnerability factors are a major instrument of failure analysis efforts. Usually computationally intensive fault-injection simulation campaigns are required to obtain a fine-grained reliability metrics for the functional level. Therefore, the use of machine learning algorithms to assist this procedure and thus, optimising and enhancing fault injection efforts, is investigated in this paper. Specifically, machine learning models are used to predict accurate per-instance Functional De-Rating data for the full list of circuit instances, an objective that is difficult to reach using classical methods. The described methodology uses a set of per-instance features, extracted through an analysis approach, combining static elements (cell properties, circuit structure, synthesis attributes) and dynamic elements (signal activity). Reference data is obtained through first-principles fault simulation approaches. One part of this reference dataset is used to train the machine learning model and the remaining is used to validate and benchmark the accuracy of the trained tool. The presented methodology is applied on a practical example and various machine learning models are evaluated and compared.
De-Rating or Vulnerability Factors are a major feature of failure analysis efforts mandated by today's Functional Safety requirements. Determining the Functional De-Rating of sequential logic cells typically requires computationally intensive fault-injection simulation campaigns. In this paper a new approach is proposed which uses Machine Learning to estimate the Functional De-Rating of individual flip-flops and thus, optimising and enhancing fault injection efforts. Therefore, first, a set of per-instance features is described and extracted through an analysis approach combining static elements (cell properties, circuit structure, synthesis attributes) and dynamic elements (signal activity). Second, reference data is obtained through first-principles fault simulation approaches. Finally, one part of the reference dataset is used to train the Machine Learning algorithm and the remaining is used to validate and benchmark the accuracy of the trained tool. The intended goal is to obtain a trained model able to provide accurate per-instance Functional De-Rating data for the full list of circuit instances, an objective that is difficult to reach using classical methods. The presented methodology is accompanied by a practical example to determine the performance of various Machine Learning models for different training sizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.