Synthetic plastics present in everyday materials constitute the main anthropogenic debris entering the Earth’s oceans. The oceans provide important and valuable resources such as food, energy, and water. They are also the main way of international trade and the main stabilizer of the climate. Hence, changes in the marine ecosystem caused by anthropogenic influences such as plastic pollution can have a dramatic impact on a global scale. Although the problem of plastics still remains unsolved, different ways are being considered to reduce their impact on the environment. One of them is to use microorganisms capable of degradation of plastic. A particularly interesting area is the application of microorganisms isolated from cold regions in view of their unique characteristics. Nevertheless, the interactions between plastic and microorganisms are still poorly known. Here, we present a review of current knowledge on plastic degradation and plastic-microorganism interactions in cold marine habitats. Moreover, we highlight the advantages of microorganisms isolated from this environment for eliminating plastic waste from ecosystems.
The increasing amount of plastic waste causes significant environmental pollution. In this study, screening of Arctic microorganisms which are able to degrade bioplastics was performed. In total, 313 microorganisms were isolated from 52 soil samples from the Arctic region (Spitsbergen). Among the isolated microorganisms, 121 (38.66%) showed biodegradation activity. The ability of clear zone formation on emulsified poly(butylene succinate-co-adipate) (PBSA) was observed for 116 microorganisms (95.87%), on poly(butylene succinate) (PBS) for 73 microorganisms (60.33%), and on poly(ɛ-caprolactone) (PCL) for 102 microorganisms (84.3%). Moreover, the growth of microorganisms on poly(lactic acid) (PLA) agar plates was observed for 56 microorganisms (46.28%). Based on the 16S rRNA sequence, 10 bacterial strains which showed the highest ability for biodegradation were identified as species belonging to Pseudomonas sp. and Rhodococcus sp. The isolated fungal strains were tested for polycaprolactone films and commercial corn and potato starch bags degradation under laboratory conditions. Strains 16G (based on the analysis of a partial 18S rRNA sequence, identified as Clonostachys rosea) and 16H (identified as Trichoderma sp.) showed the highest capability for biodegradation. A particularly high capability for biodegradation was observed for the strain Clonostachys rosea, which showed 100% degradation of starch films and 52.91% degradation of PCL films in a 30-day shake flask experiment. The main advantage of the microorganisms isolated from Arctic environment is the ability to grow at low temperature and efficient biodegradation under this condition. The data suggest that C. rosea can be used in natural and laboratory conditions for degradations of bioplastics.
The global production of polyethylene terephthalate (PET) is estimated to reach 87.16 million metric tons by 2022. After a single use, a remarkable part of PET is accumulated in the natural environment as plastic waste. Due to high hydrophobicity and high molecular weight, PET is hardly biodegraded by wild-type microorganisms. To solve the global problem of uncontrolled pollution by PET, the degradation of plastic by genetically modified microorganisms has become a promising alternative for the plastic circular economy. In recent years many studies have been conducted to improve the microbial capacity for PET degradation. In this review, we summarize the current knowledge about metabolic engineering of microorganisms and protein engineering for increased biodegradation of PET. The focus is on mutations introduced to the enzymes of the hydrolase class—PETase, MHETase and cutinase—which in the last few years have attracted growing interest for the PET degradation processes. The modifications described in this work summarize the results obtained so far on the hydrolysis of polyethylene terephthalate based on the released degradation products of this polymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.