Synthetic plastics present in everyday materials constitute the main anthropogenic debris entering the Earth’s oceans. The oceans provide important and valuable resources such as food, energy, and water. They are also the main way of international trade and the main stabilizer of the climate. Hence, changes in the marine ecosystem caused by anthropogenic influences such as plastic pollution can have a dramatic impact on a global scale. Although the problem of plastics still remains unsolved, different ways are being considered to reduce their impact on the environment. One of them is to use microorganisms capable of degradation of plastic. A particularly interesting area is the application of microorganisms isolated from cold regions in view of their unique characteristics. Nevertheless, the interactions between plastic and microorganisms are still poorly known. Here, we present a review of current knowledge on plastic degradation and plastic-microorganism interactions in cold marine habitats. Moreover, we highlight the advantages of microorganisms isolated from this environment for eliminating plastic waste from ecosystems.
An acetate-negative mutant of Yarrowia lipolytica Wratislavia K1 was selected that, when grown with 300 g raw glycerol l(-1) at pH 3, produced 170 g erythritol l(-1) after 7 days, corresponding to a 56% yield and a productivity of 1 g l(-1) h(-1). The Wratislavia K1 strain did not produce citric acid.
Yarrowia lipolytica A-101-1.22 produces high citric acid (112 g l(-1)) with a yield of 0.6 g g(-1) and a productivity of 0.71 g l(-1) h(-1) during batch cultivation in the medium with glycerol-containing waste of biodiesel industry. However, it was observed that the specific citric acid production rate, which was maximal at the beginning of the biosynthesis, gradually decreases in the late production phase and it makes continuation of the process over 100 h pointless. The cell recycle and the repeated batch regimes were performed as ways for prolongation of citric acid synthesis by yeast. Using cell recycle, the active citric acid biosynthesis (96-107 g l(-1)) with a yield of 0.64 g g(-1) and a productivity of 1.42 g l(-1) h(-1) was prolongated up to 300 h. Repeated batch culture remained stable for over 1000 h; the RB variant of 30% feed every 3 days showed the best results: 124.2 g l(-1) citric acid with a yield of 0.77 g g(-1) and a productivity of 0.85 g l(-1) h(-1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.