SummaryIn Escherichia coli many enzymes including MurG are directly involved in the synthesis and assembly of peptidoglycan. MurG is an essential glycosyltransferase catalysing the last intracellular step of peptidoglycan synthesis. To elucidate its role during elongation and division events, localization of MurG using immunofluorescence microscopy was performed. MurG exhibited a random distribution in the cell envelope with a relatively higher intensity at the division site. This mid-cell localization was dependent on the presence of a mature divisome. Its localization in the lateral cell wall appeared to require the presence of MreCD. This could be indicative of a potential interaction between MurG and other proteins. Investigating this by immunoprecipitation revealed the association of MurG with MreB and MraY in the same protein complex. In view of this, the loss of rod shape of DmreBCD strain could be ascribed to the loss of MurG membrane localization. Consequently, this could prevent the localized supply of the lipid II precursor to the peptidoglycan synthesizing machinery involved in cell elongation. It is postulated that the involvement of MurG in the peptidoglycan synthesis concurs with two complexes, one implicated in cell elongation and the other in division. A model representing the first complex is proposed.
The distribution of PBP5, the major D,D-carboxypeptidase in Escherichia coli, was mapped by immunolabelling and by visualization of GFP fusion proteins in wild-type cells and in mutants lacking one or more D,D-carboxypeptidases. In addition to being scattered around the lateral envelope, PBP5 was also concentrated at nascent division sites prior to visible constriction. Inhibiting PBP2 activity (which eliminates wall elongation) shifted PBP5 to midcell, whereas inhibiting PBP3 (which aborts divisome invagination) led to the creation of PBP5 rings at positions of preseptal wall formation, implying that PBP5 localizes to areas of ongoing peptidoglycan synthesis. A PBP5(S44G) active site mutant was more evenly dispersed, indicating that localization required enzyme activity and the availability of pentapeptide substrates. Both the membrane bound and soluble forms of PBP5 converted pentapeptides to tetrapeptides in vitro and in vivo, and the enzymes accepted the same range of substrates, including sacculi, Lipid II, muropeptides and artificial substrates. However, only the membrane-bound form localized to the developing septum and restored wild-type rod morphology to shape defective mutants, suggesting that the two events are related. The results indicate that PBP5 localization to sites of ongoing peptidoglycan synthesis is substrate dependent and requires membrane attachment.
SUMMARY To study the role of the phytohormone auxin in nematode feeding cell induction and early development, the transcriptional regulation of the artificial auxin-responsive promoter element DR5 was monitored in Arabidopsis thaliana roots infected with the cyst nematode Heterodera schachtii or the root-knot nematode Meloidogyne incognita. For both nematode species, a specific and strong activation of DR5::gusA was observed inside the initial feeding cells at 18 h post inoculation, pointing to an increase in the perceived auxin concentration. This high expression was maintained until 3-5 days post inoculation and subsequently the GUS staining was reduced. Cyst and root-knot nematodes are distantly related and the feeding sites they induce are highly dissimilar. In this respect, the similarities between the two nematode-induced DR5 activation patterns in A. thaliana roots are remarkable. A transient and local increase in auxin perception could be due to an accumulation or to an increased sensitivity. Based on previously published data, a local auxin accumulation seems to be the more probable explanation. The observed early and localized increase of the perceived IAA concentration in the initial feeding structure underlines that this phytohormone could be an important clue in feeding cell induction by plant parasitic nematodes.
Salmonella is one of the most common causes of food-borne diseases worldwide. While Salmonella molecular subtyping by Whole Genome Sequencing (WGS) is increasingly used for outbreak and source tracking investigations, serotyping remains as a first-line characterization of Salmonella isolates. The traditional phenotypic method for serotyping is logistically challenging, as it requires the use of more than 150 specific antisera and well trained personnel to interpret the results. Consequently, it is not a routine method for the majority of laboratories. Several rapid molecular methods targeting O and H loci or surrogate genomic markers have been developed as alternative solutions. With the expansion of WGS, in silico Salmonella serotype prediction using WGS data is available. Here, we compared a microarray method using molecular markers, the Check and Trace Salmonella assay (CTS) and a WGS-based serotype prediction tool that targets molecular determinants of serotype (SeqSero) to the traditional phenotypic method using 100 strains representing 45 common and uncommon serotypes. Compared to the traditional method, the CTS assay correctly serotyped 97% of the strains, four strains gave a double serotype prediction. Among the inconclusive data, one strain was not predicted and two strains were incorrectly identified. SeqSero was evaluated with two versions (SeqSero 1 and the alpha test version of SeqSero 2). The correct antigenic formula was predicted by SeqSero 1 for 96 and 95% of strains using raw reads and assembly, respectively. However, 34 and 33% of these predictions included multiple serotypes by raw reads and assembly. With raw reads, one strain was not identified and three strains were discordant with phenotypic serotyping result. With assembly, three strains were not predicted and two strains were incorrectly predicted. While still under development, SeqSero 2 maintained the accuracy of antigenic formula prediction at 98% and reduced multiple serotype prediction rate to 13%. One strain had no prediction and one strain was incorrectly predicted. Our study indicates that the CTS assay is a good alternative for routine laboratories as it is an easy to use method with a short turn-around-time. SeqSero is a reliable replacement for phenotypic serotyping if WGS is routinely implemented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.