The MraY translocase catalyzes the first membrane step of bacterial cell wall peptidoglycan synthesis (i.e. the transfer of the phospho-N-acetylmuramoyl-pentapeptide motif onto the undecaprenyl phosphate carrier lipid), a reversible reaction yielding undecaprenylpyrophosphoryl-N-acetylmuramoyl-pentapeptide (lipid intermediate I). This essential integral membrane protein, which is considered as a very promising target for the search of new antibacterial compounds, has thus far been clearly underexploited due to its intrinsic refractory nature to overexpression and purification. We here report conditions for the high level overproduction and for the first time the purification to homogeneity of milligram quantities of MraY protein. The kinetic parameters and effects of pH, salts, cations, and detergents on enzyme activity are described, taking the Bacillus subtilis MraY translocase as a model.
SummaryIn Escherichia coli many enzymes including MurG are directly involved in the synthesis and assembly of peptidoglycan. MurG is an essential glycosyltransferase catalysing the last intracellular step of peptidoglycan synthesis. To elucidate its role during elongation and division events, localization of MurG using immunofluorescence microscopy was performed. MurG exhibited a random distribution in the cell envelope with a relatively higher intensity at the division site. This mid-cell localization was dependent on the presence of a mature divisome. Its localization in the lateral cell wall appeared to require the presence of MreCD. This could be indicative of a potential interaction between MurG and other proteins. Investigating this by immunoprecipitation revealed the association of MurG with MreB and MraY in the same protein complex. In view of this, the loss of rod shape of DmreBCD strain could be ascribed to the loss of MurG membrane localization. Consequently, this could prevent the localized supply of the lipid II precursor to the peptidoglycan synthesizing machinery involved in cell elongation. It is postulated that the involvement of MurG in the peptidoglycan synthesis concurs with two complexes, one implicated in cell elongation and the other in division. A model representing the first complex is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.