Xylella fastidiosa is a fastidious, xylem-limited bacterium that causes a range of economically important plant diseases. Here we report the complete genome sequence of X. fastidiosa clone 9a5c, which causes citrus variegated chlorosis--a serious disease of orange trees. The genome comprises a 52.7% GC-rich 2,679,305-base-pair (bp) circular chromosome and two plasmids of 51,158 bp and 1,285 bp. We can assign putative functions to 47% of the 2,904 predicted coding regions. Efficient metabolic functions are predicted, with sugars as the principal energy and carbon source, supporting existence in the nutrient-poor xylem sap. The mechanisms associated with pathogenicity and virulence involve toxins, antibiotics and ion sequestration systems, as well as bacterium-bacterium and bacterium-host interactions mediated by a range of proteins. Orthologues of some of these proteins have only been identified in animal and human pathogens; their presence in X. fastidiosa indicates that the molecular basis for bacterial pathogenicity is both conserved and independent of host. At least 83 genes are bacteriophage-derived and include virulence-associated genes from other bacteria, providing direct evidence of phage-mediated horizontal gene transfer.
OneMap is an environment for constructing linkage maps of outcrossing plant species, using full-sib families derived from two outbred parents. The analyses are performed using a novel methodology based on the maximum likelihood approach for simultaneous estimation of linkage and linkage phases (WU et al. 2002), which has been successfully applied to sugarcane (GARCIA et al. 2006). It is implemented as a set of functions for the freely distributed software R, and handles pairwise marker analysis, marker ordering and map refinement. The software is freely available at
Many plant species of great economic value (e.g., potato, wheat, cotton, and sugarcane) are polyploids. Despite the essential roles of autopolyploid plants in human activities, our genetic understanding of these species is still poor. Recent progress in instrumentation and biochemical manipulation has led to the accumulation of an incredible amount of genomic data. In this study, we demonstrate for the first time a successful genetic analysis in a highly polyploid genome (sugarcane) by the quantitative analysis of single-nucleotide polymorphism (SNP) allelic dosage and the application of a new data analysis framework. This study provides a better understanding of autopolyploid genomic structure and is a sound basis for genetic studies. The proposed methods can be employed to analyse the genome of any autopolyploid and will permit the future development of high-quality genetic maps to assist in the assembly of reference genome sequences for polyploid species.
Mangrove plants comprise a unique group of organisms that grow within the intertidal zones of tropical and subtropical regions and whose distributions are influenced by both biotic and abiotic factors. To understand how these extrinsic and intrinsic processes influence a more fundamental level of the biological hierarchy of mangroves, we studied the genetic diversity of two Neotropical mangrove trees, Avicenniagerminans and A. schaueriana, using microsatellites markers. As reported for other sea-dispersed species, there was a strong differentiation between A. germinans and A. schaueriana populations sampled north and south of the northeastern extremity of South America, likely due to the influence of marine superficial currents. Moreover, we observed fine-scale genetic structures even when no obvious physical barriers were present, indicating pollen and propagule dispersal limitation, which could be explained by isolation-by-distance coupled with mating system differences. We report the first evidence of ongoing hybridization between Avicennia species and that these hybrids are fertile, although this interspecific crossing has not contributed to an increase in the genetic diversity the populations where A. germinans and A. schaueriana hybridize. These findings highlight the complex interplay between intrinsic and extrinsic factors that shape the distribution of the genetic diversity in these sea-dispersed colonizer species.
Despite the economical importance of sugar cane, until the present-date no studies have been carried out to determine the correlation of the molecular-based genetic similarity (GS) and the coefficient of parentage ( f)-estimates generated for cultivars. A comprehensive knowledge of the amount of genetic diversity in parental cultivars, could improve the effectiveness of breeding programmes. In this study, amplified fragment length polymorphism (AFLP) and pedigree data were used to investigate the genetic relationship in a group of 79 cultivars (interspecific hybrids), used as parents in one of the Brazilian breeding programmes, and four species of Saccharum ( Saccharum sinense, Saccharum barberi and two of Saccharum officinarum). The objectives of this study were to assess the level of genetic similarity among the sugar-cane cultivars and to investigate the correlation between the AFLP-based GS and f, based on pedigree information. Twenty one primer combinations were used to obtain the AFLP molecular markers, generating a total of 2,331 bands, of which 1,121 were polymorphic, with a polymorphism rate, on average, of 50% per primer combination. GSs were determined using Jaccard's similarity coefficient, and a final dendrogram was constructed using an unweighted pair-group method using arithmetic average (UPGMA). AFLP-based GS ranged from 0.28 to 0.89, with a mean of 0.47, whereas f ranged from 0 to 0.503, with a mean of 0.057. Cluster analysis using GS divided the genotypes into related subgroups suggesting that there is important genetic relationship among the cultivars. AFLP-based GS and f were significantly correlated ( r= 0.42, P< 0.001), thus the significance of this r value suggests that the AFLP data may help to more-accurately quantify the degree of relationship among sugar-cane cultivars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.