Septins, a highly conserved family of GTP-binding proteins, were originally identified in a genetic screen for S. cerevisiae mutants defective in cytokinesis [1, 2]. In yeast, septins maintain the compartmentalization of the yeast plasma membrane during cell division by forming rings at the cortex of the bud neck, and these rings establish a lateral diffusion barrier. In contrast, very little is known about the functions of septins in mammalian cells [3, 4] including postmitotic neurons [5-7]. Here, we show that Septin 7 (Sept7) localizes at the bases of filopodia and at branch points in developing hippocampal neurons. Upon downregulation of Sept7, dendritic branching is impaired. In mature neurons, Sept7 is found at the bases of dendritic spines where it associates with the plasma membrane. Mature Sept7-deficient neurons display elongated spines. Furthermore, Sept5 and Sept11 colocalize with and coimmunoprecipitate with Sept7, thereby arguing for the existence of a Septin5/7/11 complex. Taken together, our findings show an important role for Sept7 in regulating dendritic branching and dendritic-spine morphology. Our observations concur with data from yeast, in which downregulation of septins yields elongated buds, suggesting a conserved function for septins from yeast to mammals.
We identified a direct interaction between the neuronal transmembrane protein calsyntenin-1 and the light chain of Kinesin-1 (KLC1). GST pulldowns demonstrated that two highly conserved segments in the cytoplasmic domain of calsyntenin-1 mediate binding to the tetratricopeptide repeats of KLC1. A complex containing calsyntenin-1 and the Kinesin-1 motor was isolated from developing mouse brain and immunoelectron microscopy located calsyntenin-1 in association with tubulovesicular organelles in axonal fiber tracts. In primary neuronal cultures, calsyntenin-1-containing organelles were aligned along microtubules and partially colocalized with Kinesin-1. Using live imaging, we showed that these organelles are transported along axons with a velocity and processivity typical for fast axonal transport. Point mutations in the two kinesin-binding segments of calsyntenin-1 significantly reduced binding to KLC1 in vitro, and vesicles bearing mutated calsyntenin-1 exhibited a markedly altered anterograde axonal transport. In summary, our results indicate that calsyntenin-1 links a certain type of vesicular and tubulovesicular organelles to the Kinesin-1 motor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.