Septins, a highly conserved family of GTP-binding proteins, were originally identified in a genetic screen for S. cerevisiae mutants defective in cytokinesis [1, 2]. In yeast, septins maintain the compartmentalization of the yeast plasma membrane during cell division by forming rings at the cortex of the bud neck, and these rings establish a lateral diffusion barrier. In contrast, very little is known about the functions of septins in mammalian cells [3, 4] including postmitotic neurons [5-7]. Here, we show that Septin 7 (Sept7) localizes at the bases of filopodia and at branch points in developing hippocampal neurons. Upon downregulation of Sept7, dendritic branching is impaired. In mature neurons, Sept7 is found at the bases of dendritic spines where it associates with the plasma membrane. Mature Sept7-deficient neurons display elongated spines. Furthermore, Sept5 and Sept11 colocalize with and coimmunoprecipitate with Sept7, thereby arguing for the existence of a Septin5/7/11 complex. Taken together, our findings show an important role for Sept7 in regulating dendritic branching and dendritic-spine morphology. Our observations concur with data from yeast, in which downregulation of septins yields elongated buds, suggesting a conserved function for septins from yeast to mammals.
SummaryNeurons in the mammalian neocortex arise from asymmetric divisions of progenitors residing in the ventricular zone. While in most progenitor divisions, the mitotic spindle is parallel to the ventricular surface, some progenitors reorient the spindle and divide in oblique orientations. Here, we use conditional deletion and overexpression of mouse Inscuteable (mInsc) to analyze the relevance of spindle reorientation in cortical progenitors. Mutating mInsc almost abolishes oblique and vertical mitotic spindles, while mInsc overexpression has the opposite effect. Our data suggest that oblique divisions are essential for generating the correct numbers of neurons in all cortical layers. Using clonal analysis, we demonstrate that spindle orientation affects the rate of indirect neurogenesis, a process where progenitors give rise to basal progenitors, which in turn divide symmetrically into two differentiating neurons. Our results indicate that the orientation of progenitor cell divisions is important for correct lineage specification in the developing mammalian brain.
SUMMARY
The formation of the mammalian cortex requires the generation, migration, and differentiation of neurons. The vital role that the microtubule cytoskeleton plays in these cellular processes is reflected by the discovery that mutations in various tubulin isotypes cause different neurodevelopmental diseases, including lissencephaly (TUBA1A), polymicrogyria (TUBA1A, TUBB2B, TUBB3), and an ocular motility disorder (TUBB3). Here, we show that Tubb5 is expressed in neurogenic progenitors in the mouse and that its depletion in vivo perturbs the cell cycle of progenitors and alters the position of migrating neurons. We report the occurrence of three microcephalic patients with structural brain abnormalities harboring de novo mutations in TUBB5 (M299V, V353I, and E401K). These mutant proteins, which affect the chaperone-dependent assembly of tubulin heterodimers in different ways, disrupt neurogenic division and/or migration in vivo. Our results provide insight into the functional repertoire of the tubulin gene family, specifically implicating TUBB5 in embryonic neurogenesis and microcephaly.
Pumilio (Pum) protein acts as a translational inhibitor in several organisms including yeast, Drosophila, Xenopus, and mammals. Two Pumilio genes, Pum1 and Pum2, have been identified in mammals, but their function in neurons has not been identified. In this study, we found that Pum2 mRNA is expressed during neuronal development and that the protein is found in discrete particles in both the cell body and the dendritic compartment of fully polarized neurons. This finding indicates that Pum2 is a novel candidate of dendritically localized ribonucleoparticles (RNPs). During metabolic stress, Pum2 is present in stress granules (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.