Coinjections of conservative tracers and nutrients are commonly used to assess travel time distributions and nutrient removal in streams. However, in‐stream tracer data often lack information on long‐term hyporheic storage, and removal rate coefficients are often assumed to be uniform despite plentiful evidence that microbially mediated transformations, such as denitrification, exhibit strong spatial variability in the hyporheic zone. We used process‐based particle‐tracking simulations to explore the coupled effects of spatial patterns in hyporheic flow and denitrification on reach‐scale nitrogen removal. We simulated whole‐stream nitrogen dynamics with exponential, layered, and uniform profiles of hyporheic denitrification. We also simulated nitrogen dynamics in Little Rabbit Creek, an agricultural headwater stream in the Kalamazoo River Basin (Michigan, USA) where vertical profiles of hyporheic denitrification were measured in situ. Covariation between pore water velocity and mixing causes rapid exchange in the near‐surface bioactive region and substantially prolonged exchange in the deeper hyporheic. Patterns of hyporheic denitrification covary with patterns of hyporheic flow. This covariation directly controls tailing of in‐stream breakthrough curves and hence reach‐scale nutrient removal. Enhanced denitrification near the sediment‐water interface strongly tempers breakthrough curve tails at time scales associated with flushing of the near‐surface region, while more spatially uniform denitrification causes weaker tempering over a wider range of hyporheic exchange time scales. At the reach scale, overall nitrogen removal increases with heterogeneity of hyporheic denitrification, indicating that covariation between flow and denitrification—particularly the rapid flushing of highly bioactive regions near the sediment‐water interface—controls whole‐stream transformation rates.
Abstract. Although most field and modeling studies of river corridor exchange have been conducted a scales ranging from 10’s to 100’s of meters; results of these studies are used to predict their ecological and hydrological influences at the scale of river networks. Further complicating prediction, exchange are expected to vary with hydrologic forcing and the local geomorphic setting. While we desire predictive power, we lack a complete spatiotemporal relationship relating discharge to the variation in geologic setting and hydrologic forcing that are expected across a river basin. Indeed, Wondzell’s [2011] conceptual model predicts systematic variation in river corridor exchange as a function of (1) variation in discharge over time at a fixed location, (2) variation in discharge with location in the river network, and (3) local geomorphic setting. To test this conceptual model we conducted more than 60 solute tracer studies collected in a synoptic campaign in the 5th order river network of the H. J. Andrews Experimental Forest (Oregon, USA). We interpret the data using a series of metrics describing river corridor exchange and solute transport, testing for consistent direction and magnitude of relationships relating these metrics to discharge and local geomorphic setting. We confirmed systematic decrease in river corridor exchange space through the river networks, from headwaters to the larger mainstem. However, we did not find systematic variation with changes in discharge through time, nor with local geomorphic setting. While interpretation of our results are complicated by problems with the analytical methods, they are sufficiently robust for us to conclude that space-for-time and time-for-space substitutions are not appropriate in our study system. Finally, we suggest two strategies that will improve the interpretability of tracer test results and help the hyporheic community develop robust data sets that will enable comparisons across multiple sites and/or discharge conditions.
Bidirectional flow between surface water and sediment leads to high accumulation of small and lightweight microplastics in rivers.
Turbulence causes rapid mixing of solutes and fine particles between open channel flow and coarse‐grained streambeds. Turbulent mixing is known to control hyporheic exchange fluxes and the distribution of vertical mixing rates in the streambed, but it is unclear how turbulent mixing ultimately influences mass transport at the reach scale. We used a particle‐tracking model to simulate local‐ and reach‐scale solute transport for a stream with coarse‐grained sediments. Simulations were first used to determine profiles of vertical mixing rates that best described solute concentration profiles measured within a coarse granular bed in flume experiments. These vertical mixing profiles were then used to simulate a pulse solute injection to show the effects of turbulent hyporheic exchange on reach‐scale solute transport. Experimentally measured concentrations were best described by simulations with a nonmonotonic mixing profile, with highest mixing at the sediment–water interface and exponential decay into the bed. Reach‐scale simulations show that this enhanced interfacial mixing couples in‐stream and hyporheic solute transport. Coupling produces an interval of exponential decay in breakthrough curves and delays the onset of power law tailing. High streamwise velocities in the hyporheic zone reduce mass recovery in the water column and cause breakthrough curves to exhibit steeper power law slopes than predictions from mobile‐immobile modeling theory. These results demonstrate that transport models must consider the spatial variability of streamwise velocity and vertical mixing for both the stream and the hyporheic zone, and new analytical theory is needed to describe reach‐scale transport when high streamwise velocities are present in the hyporheic zone.
Abstract. Although most field and modeling studies of river corridor exchange have been conducted at scales ranging from tens to hundreds of meters, results of these studies are used to predict their ecological and hydrological influences at the scale of river networks. Further complicating prediction, exchanges are expected to vary with hydrologic forcing and the local geomorphic setting. While we desire predictive power, we lack a complete spatiotemporal relationship relating discharge to the variation in geologic setting and hydrologic forcing that is expected across a river basin. Indeed, the conceptual model of Wondzell (2011) predicts systematic variation in river corridor exchange as a function of (1) variation in baseflow over time at a fixed location, (2) variation in discharge with location in the river network, and (3) local geomorphic setting. To test this conceptual model we conducted more than 60 solute tracer studies including a synoptic campaign in the 5th-order river network of the H. J. Andrews Experimental Forest (Oregon, USA) and replicate-in-time experiments in four watersheds. We interpret the data using a series of metrics describing river corridor exchange and solute transport, testing for consistent direction and magnitude of relationships relating these metrics to discharge and local geomorphic setting. We confirmed systematic decrease in river corridor exchange space through the river networks, from headwaters to the larger main stem. However, we did not find systematic variation with changes in discharge through time or with local geomorphic setting. While interpretation of our results is complicated by problems with the analytical methods, the results are sufficiently robust for us to conclude that space-for-time and time-for-space substitutions are not appropriate in our study system. Finally, we suggest two strategies that will improve the interpretability of tracer test results and help the hyporheic community develop robust datasets that will enable comparisons across multiple sites and/or discharge conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.