There are many documented examples of viral genes retained in the genomes of multicellular organisms that may in some cases bring new beneficial functions to the receivers. The ability of certain ichneumonid parasitic wasps to produce virus-derived particles, the socalled ichnoviruses (IVs), not only results from the capture and domestication of single viral genes but of almost entire ancestral virus genome(s). Indeed, following integration into wasp chromosomal DNA, the putative and still undetermined IV ancestor(s) evolved into encoding a 'virulence gene delivery vehicle' that is now required for successful infestation of wasp hosts. Several putative viral genes, which are clustered in distinct regions of wasp genomes referred to as IVSPERs (Ichnovirus Structural Protein Encoding Regions), have been assumed to be involved in virus-derived particles morphogenesis, but this question has not been previously functionally addressed. In the present study, we have successfully combined RNA interference and transmission electron microscopy to specifically identify IVSPER genes that are responsible for the morphogenesis and trafficking of the virusderived particles in ovarian cells of the ichneumonid wasp Hyposoter didymator. We suggest that ancestral viral genes retained within the genomes of certain ichneumonid parasitoids possess conserved functions which were domesticated for the purpose of assembling viral vectors for the delivery of virulence genes to parasitized host animals. Author summaryThousands of parasitic wasp from the ichneumonid family rely on virus-derived particles, named Ichnoviruses (Polydnavirus family), to ensure their successful development. The particles are produced in a specialized ovarian tissue of the female wasp named calyx. Virions are assembled in the calyx cell nuclei and stored in the oviduct before being transferred to the parasitoid host upon female wasp oviposition. Genes encoding proteins PLOS Pathogens | https://doi.
Bracoviruses (BVs) are endogenized nudiviruses that braconid parasitoid wasps have coopted for functions in parasitizing hosts. Microplitis demolitor is a braconid wasp that produces Microplitis demolitor bracovirus (MdBV) and parasitizes the larval stage of the moth Chrysodeixis includens. Some BV core genes are homologs of genes also present in baculoviruses while others are only known from nudiviruses or other BVs. In this study, we had two main goals. The first was to separate MdBV virions into envelope and nucleocapsid fractions before proteomic analysis to identify core gene products that were preferentially associated with one fraction or the other. Results indicated that nearly all MdBV baculovirus-like gene products that were detected by our proteomic analysis had similar distributions to homologs in the occlusion-derived form of baculoviruses. Several core gene products unknown from baculoviruses were also identified as envelope or nucleocapsid components. Our second goal was to functionally characterize a core gene unknown from baculoviruses that was originally named HzNVorf64-like. Immunoblotting assays supported our proteomic data that identified HzNVorf64-like as an envelope protein. We thus renamed HzNVorf64-like as MdBVe46, which we further hypothesized was important for infection of C. includens. Knockdown of MdBVe46 by RNA interference (RNAi) greatly reduced transcript and protein abundance. Knockdown of MdBVe46 also altered virion morphogenesis, near-fully inhibited infection of C. includens, and significantly reduced the proportion of hosts that were successfully parasitized by M. demolitor.
Winged aphids are described as hosts of lesser quality for parasitoids because a part of their resources is used to produce wings and associated muscles during their development. Host lipid content is particularly important for parasitoid larvae as they lack lipogenesis and therefore rely entirely on the host for this resource. The goal of this study was to determine to what extent winged and wingless aphids differ from a nutritional point of view and whether these differences impact parasitoid fitness, notably the lipid content. We analysed the energetic budget (proteins, lipids and carbohydrates) of aphids of different ages (third instars, fourth instars and adults) according to the morph (winged or wingless). We also compared fitness indicators for parasitoids emerging from winged and wingless aphids (third and fourth instars). We found that in third instars, parasitoids are able to inhibit wing development whereas this is not the case in fourth instars. Both winged instars allow the production of heavier and fattier parasitoids. The presence of wings in aphids seems to have little effect on the fitness of emerging parasitoids and did not modify female choice for oviposition. Finally, we demonstrate that , used as a biological control agent, is able to parasitize wingless as well as winged, at least in the juvenile stages. If the parasitism occurs in third instars, the parasitoid will prevent the aphid from flying, which could in turn reduce virus transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.