BackgroundRegional and epidemiological cancer registries are important for cancer research and the quality management of cancer treatment. Many technological solutions are available to collect and analyse data for cancer registries nowadays. However, the lack of a well-defined common semantic model is a problem when user-defined analyses and data linking to external resources are required. The objectives of this study are: (1) design of a semantic model for local cancer registries; (2) development of a semantically-enabled cancer registry based on this model; and (3) semantic exploitation of the cancer registry for analysing and visualising disease courses.ResultsOur proposal is based on our previous results and experience working with semantic technologies. Data stored in a cancer registry database were transformed into RDF employing a process driven by OWL ontologies. The semantic representation of the data was then processed to extract semantic patient profiles, which were exploited by means of SPARQL queries to identify groups of similar patients and to analyse the disease timelines of patients.Based on the requirements analysis, we have produced a draft of an ontology that models the semantics of a local cancer registry in a pragmatic extensible way. We have implemented a Semantic Web platform that allows transforming and storing data from cancer registries in RDF. This platform also permits users to formulate incremental user-defined queries through a graphical user interface. The query results can be displayed in several customisable ways. The complex disease timelines of individual patients can be clearly represented. Different events, e.g. different therapies and disease courses, are presented according to their temporal and causal relations.ConclusionThe presented platform is an example of the parallel development of ontologies and applications that take advantage of semantic web technologies in the medical field. The semantic structure of the representation renders it easy to analyse key figures of the patients and their evolution at different granularity levels.
Liver transplantation is the only curative treatment option in patients diagnosed with end-stage liver disease. The low availability of organs demands an accurate selection procedure based on histological analysis, in order to evaluate the allograft. This assessment, traditionally carried out by a pathologist, is not exempt from subjectivity. In this sense, new tools based on machine learning and artificial vision are continuously being developed for the analysis of medical images of different typologies. Accordingly, in this work, we develop a computer vision-based application for the fast and automatic objective quantification of macrovesicular steatosis in histopathological liver section slides stained with Sudan stain. For this purpose, digital microscopy images were used to obtain thousands of feature vectors based on the RGB and CIE L*a*b* pixel values. These vectors, under a supervised process, were labelled as fat vacuole or non-fat vacuole, and a set of classifiers based on different algorithms were trained, accordingly. The results obtained showed an overall high accuracy for all classifiers (>0.99) with a sensitivity between 0.844 and 1, together with a specificity >0.99. In relation to their speed when classifying images, KNN and Naïve Bayes were substantially faster than other classification algorithms. Sudan stain is a convenient technique for evaluating ME in pre-transplant liver biopsies, providing reliable contrast and facilitating fast and accurate quantification through the machine learning algorithms tested.
Cancer therapy-induced cardiomyopathy (CCM) manifests as left ventricular (LV) dysfunction and heart failure (HF). It is associated withparticular pharmacological agents and it is typically dose dependent, but significant individual variability has been observed. History of prior cardiac disease, abuse of toxics, cardiac overload conditions, age, and genetic predisposing factors modulate the degree of the cardiac reserve and the response to the injury. Genetic/familial cardiomyopathies (CMY) are increasingly recognized in general populations with an estimated prevalence of 1:250. Association between cardiac and oncologic diseases regarding genetics involves not only the toxicity process, but pathogenicity. Genetic variants in germinal cells that cause CMY (LMNA, RAS/MAPK) can increase susceptibility for certain types of cancer. The study of mutations found in cancer cells (somatic) has revealed the implication of genes commonly associated with the development of CMY. In particular, desmosomal mutations have been related to increased undifferentiation and invasiveness of cancer. In this article, the authors review the knowledge on the relevance of environmental and genetic background in CCM and give insights into the shared genetic role in the pathogenicity of the cancer process and development of CMY.
Colorectal cancer (CRC) is the third leading cause of cancer mortality worldwide. Different pathological pathways and molecular drivers have been described and some of the associated markers are used to select effective anti-neoplastic therapy. More recent evidence points to a causal role of microbiota and altered microRNA expression in CRC carcinogenesis, but their relationship with pathological drivers or molecular phenotypes is not clearly established. Joint analysis of clinical and omics data can help clarify such relations. We present ColPortal, a platform that integrates transcriptomic, microtranscriptomic, methylomic and microbiota data of patients with colorectal cancer. ColPortal also includes detailed information of histological features and digital histological slides from the study cases, since histology is a morphological manifestation of a complex molecular change. The current cohort consists of Caucasian patients from Europe. For each patient, demographic information, location, histology, tumor staging, tissue prognostic factors, molecular biomarker status and clinical outcomes are integrated with omics data. ColPortal allows one to perform multiomics analyses for groups of patients selected by their clinical data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.