Myoglobinuric acute renal failure has three pathogenic mechanisms: tubular obstruction, renal vasoconstriction, and oxidative stress. The latter is generated through the iron released from the group hemo of the myoglobin. Iron induces the formation of high-activity oxygen free radicals that increase oxidative stress and provoke lipid peroxidation and cellular death. This oxidative stress can be measured in several ways, both total or partially with the total antioxidant status or the intermediate enzymes. On the other hand, N-acetylcysteine is a demonstrated substance with antioxidant properties. The aim of the present work was to assess the effect of N-acetylcysteine on the oxidative stress in the glycerol-induced acute renal failure in rats model. We observed that the animals treated with N-acetylcysteine showed an improvement in the antioxidant activity given by an increase in the total antioxidant status and glutathione reductase levels in serum. This improvement was greater when treatment was administered before the induction of rhabdomyolysis. Nevertheless, the observed increase in antioxidant status was only statistically significant for glutathione reductase but not for total antioxidant status. Our results support an important role for N-acetylcysteine in the treatment of this form of acute renal failure, although we think that oxidative stress is not the main pathogenic mechanism of the tubular necrosis induced by rhabdomyolysis, tubular obstruction and renal vasoconstriction being still more important.
Oxygen metabolites play an important role in renal injury during myoglobinuric acute renal failure (ARF). This study was designed to determine the protective influence of N-acetylcysteine (NAC), a hydroxyl radical scavenger, and treatment in an experimental model of myoglobinuric-ARF induced by intramuscular injection of hypertonic glycerol in rats. The rats were randomly distributed into five groups: Group 0 (n = 10), was assigned to receive 2mL saline (0,9%) intraperitoneally (ip); Group 1 (n = 10), NAC ip in a dose of 0 mg/100 g of body weight 30 min before the intramuscular (im) injection of 50% glycerol (10 mg/kg); Group 2 (n = 10), received saline 0,9% ip in a equivalent volume of NAC in Group I before the im injection of glycerol; Group 3 (n = 10), received NAC ip in a dose of 10 mg/100 g after im injection of glycerol; Group 4 (n = 10), saline 0,9% ip in a equivalent volume of NAC of the Group 3 after im administration of glycerol. After 24 h rats were sacrificed and kidney morphology and renal function were determined. A severe renal failure was produced by glycerol injection in the Groups 1, 2, 3, and 4, with significant tubular proximal necrosis and cast formation, and creatinine and urea concentrations were elevated in these groups without significant differences among groups, but Group 0 where the values were significantly lower. The results of this study suggests that ip administration of NAC in rats before or after glycerol injection do not confer protection against impairment of renal function under these conditions in this model of myoglobinuric-ARF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.