Background: Quantitative measures of human movement quality are important for discriminating healthy and pathological conditions and for expressing the outcomes and clinically important changes in subjects' functional state. However the most frequently used instruments for the upper extremity functional assessment are clinical scales, that previously have been standardized and validated, but have a high subjective component depending on the observer who scores the test. But they are not enough to assess motor strategies used during movements, and their use in combination with other more objective measures is necessary. The objective of the present review is to provide an overview on objective metrics found in literature with the aim of quantifying the upper extremity performance during functional tasks, regardless of the equipment or system used for registering kinematic data. Methods: A search in Medline, Google Scholar and IEEE Xplore databases was performed following a combination of a series of keywords. The full scientific papers that fulfilled the inclusion criteria were included in the review. Findings: A set of kinematic metrics was found in literature in relation to joint displacements, analysis of hand trajectories and velocity profiles. These metrics were classified into different categories according to the movement characteristic that was being measured. Interpretation: These kinematic metrics provide the starting point for a proposed objective metrics for the functional assessment of the upper extremity in people with movement disorders as a consequence of neurological injuries. Potential areas of future and further research are presented in the Discussion section.
Study design: Crossover trial. Objectives: To investigate the effects of whole-body vibration (WBV) on muscular activity and blood flow velocity after different vibration treatments in patients with spinal cord injury (SCI). Setting: Research Center on Physical Disability (Spain). Methods: Eight individuals with SCI received six 3-min WBV treatments depending on a combination of frequency (10, 20 or 30 Hz) and protocol (constant, that is, three consecutive minutes of WBV, or fragmented, that is, three sets of 1 min of WBV with 1 min of rest between the sets). Femoral artery blood flow velocity was registered at minutes 1, 2 and 3 of WBV, and at minutes 1 and 2 after the end of the stimulus. Electromyography activity (EMG) of vastus lateralis (VL) and vastus medialis (VM) was registered at baseline and during WBV. Results: Peak blood velocity (PBV) increased after 1, 2 and 3 min of WBV. The 10 Hz frequency did not alter blood flow, whereas the 20 Hz frequency increased PBV after 2 and 3 min of WBV, and the 30 Hz frequency increased PBV after 1, 2 and 3 min of WBV and during the first minute after the end of the stimulus. No protocol effect was observed for blood parameters. EMG activity of VL and VM increased independently of the applied frequency or protocol. Conclusion: WBV is an effective method to increase leg blood flow and to activate muscle mass in SCI patients, and could be considered to be incorporated in their rehabilitation programs.
The closed-loop control of rehabilitative technologies by neural commands has shown a great potential to improve motor recovery in patients suffering from paralysis. Brain–machine interfaces (BMI) can be used as a natural control method for such technologies. BMI provides a continuous association between the brain activity and peripheral stimulation, with the potential to induce plastic changes in the nervous system. Paraplegic patients, and especially the ones with incomplete injuries, constitute a potential target population to be rehabilitated with brain-controlled robotic systems, as they may improve their gait function after the reinforcement of their spared intact neural pathways. This paper proposes a closed-loop BMI system to control an ambulatory exoskeleton—without any weight or balance support—for gait rehabilitation of incomplete spinal cord injury (SCI) patients. The integrated system was validated with three healthy subjects, and its viability in a clinical scenario was tested with four SCI patients. Using a cue-guided paradigm, the electroencephalographic signals of the subjects were used to decode their gait intention and to trigger the movements of the exoskeleton. We designed a protocol with a special emphasis on safety, as patients with poor balance were required to stand and walk. We continuously monitored their fatigue and exertion level, and conducted usability and user-satisfaction tests after the experiments. The results show that, for the three healthy subjects, 84.44 ± 14.56% of the trials were correctly decoded. Three out of four patients performed at least one successful BMI session, with an average performance of 77.6 1 ± 14.72%. The shared control strategy implemented (i.e., the exoskeleton could only move during specific periods of time) was effective in preventing unexpected movements during periods in which patients were asked to relax. On average, 55.22 ± 16.69% and 40.45 ± 16.98% of the trials (for healthy subjects and patients, respectively) would have suffered from unexpected activations (i.e., false positives) without the proposed control strategy. All the patients showed low exertion and fatigue levels during the performance of the experiments. This paper constitutes a proof-of-concept study to validate the feasibility of a BMI to control an ambulatory exoskeleton by patients with incomplete paraplegia (i.e., patients with good prognosis for gait rehabilitation).
BackgroundBrain-machine interfaces (BMI) have recently been integrated within motor rehabilitation therapies by actively involving the central nervous system (CNS) within the exercises. For instance, the online decoding of intention of motion of a limb from pre-movement EEG correlates is being used to convert passive rehabilitation strategies into active ones mediated by robotics. As early stages of upper limb motor rehabilitation usually focus on analytic single-joint mobilizations, this paper investigates the feasibility of building BMI decoders for these specific types of movements.MethodsTwo different experiments were performed within this study. For the first one, six healthy subjects performed seven self-initiated upper-limb analytic movements, involving from proximal to distal articulations. For the second experiment, three spinal cord injury patients performed two of the previously studied movements with their healthy elbow and paralyzed wrist. In both cases EEG neural correlates such as the event-related desynchronization (ERD) and movement related cortical potentials (MRCP) were analyzed, as well as the accuracies of continuous decoders built using the pre-movement features of these correlates (i.e., the intention of motion was decoded before movement onset).ResultsThe studied movements could be decoded in both healthy subjects and patients. For healthy subjects there were significant differences in the EEG correlates and decoding accuracies, dependent on the moving joint. Percentages of correctly anticipated trials ranged from 75% to 40% (with chance level being around 20%), with better performances for proximal than for distal movements. For the movements studied for the SCI patients the accuracies were similar to the ones of the healthy subjects.ConclusionsThis paper shows how it is possible to build continuous decoders to detect movement intention from EEG correlates for seven different upper-limb analytic movements. Furthermore we report differences in accuracies among movements, which might have an impact on the design of the rehabilitation technologies that will integrate this new type of information. The applicability of the decoders was shown in a clinical population, with similar performances between healthy subjects and patients.Electronic supplementary materialThe online version of this article (doi:10.1186/1743-0003-11-153) contains supplementary material, which is available to authorized users.
Robotic and functional electrical stimulation (FES) approaches are used for rehabilitation of walking impairment of spinal cord injured individuals. Although devices are commercially available, there are still issues that remain to be solved. Control of hybrid exoskeletons aims at blending robotic exoskeletons and electrical stimulation to overcome the drawbacks of each approach while preserving their advantages. Hybrid actuation and control have a considerable potential for walking rehabilitation but there is a need of novel control strategies of hybrid systems that adequately manage the balance between FES and robotic controllers. Combination of FES and robotic control is a challenging issue, due to the non-linear behavior of muscle under stimulation and the lack of developments in the field of hybrid control. In this article, a cooperative control strategy of a hybrid exoskeleton is presented. This strategy is designed to overcome the main disadvantages of muscular stimulation: electromechanical delay and change in muscle performance over time, and to balance muscular and robotic actuation during walking.Experimental results in healthy subjects show the ability of the hybrid FES-robot cooperative control to balance power contribution between exoskeleton and muscle stimulation. The robotic exoskeleton decreases assistance while adequate knee kinematics are guaranteed. A new technique to monitor muscle performance is employed, which allows to estimate muscle fatigue and implement muscle fatigue management strategies. Kinesis is therefore the first ambulatory hybrid exoskeleton that can effectively balance robotic and FES actuation during walking. This represents a new opportunity to implement new rehabilitation interventions to induce locomotor activity in patients with paraplegia.Acronym list: 10mWT: ten meters walking test; 6MWT: six minutes walking test; FSM: finite-state machine; t-FSM: time-domain FSM; c-FSM: cycle-domain FSM; FES: functional electrical stimulation; HKAFO: hip-knee-ankle-foot orthosis; ILC: iterative error-based learning control; MFE: muscle fatigue estimator; NILC: Normalized stimulation output from ILC controller; PID: Proportional-Integral-derivative Control; PW: Stimulation pulse width; QUEST: Quebec User Evaluation of Satisfaction with assistive Technology; SCI: Spinal cord injury; TTI: torque-time integral; VAS: Visual Analog Scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.