Background Caffeine supplementation (CAFF) has an established ergogenic effect on physical performance and the psychological response to exercise. However, few studies have compared the response to CAFF intake among athletes of different competition level. This study compares the acute effects of CAFF on anaerobic performance, mood and perceived effort in elite and moderately-trained recreational athletes. Methods Participants for this randomized, controlled, crossover study were 8 elite athletes (in the senior boxing national team) and 10 trained-recreational athletes. Under two experimental conditions, CAFF supplementation (6 mg/kg) or placebo (PLAC), the athletes completed a Wingate test. Subjective exertion during the test was recorded as the rating of perceived exertion (RPE) both at the general level (RPEgeneral) and at the levels muscular (RPEmuscular) and cardiorespiratory (RPEcardio). Before the Wingate test, participants completed the questionnaires Profiles of Moods States (POMS) and Subjective Vitality Scale (SVS). Results In response to CAFF intake, improvements were noted in Wpeak (11.22 ± 0.65 vs 10.70 ± 0.84; p = 0.003; $$ {\eta}_p^2 $$ηp2=0.44), Wavg (8.75 ± 0.55 vs 8.41 0.46; p = 0.001; $$ {\eta}_p^2 $$ηp2 =0.53) and time taken to reach Wpeak (7.56 ± 1.58 vs 9.11 ± 1.53; p < 0.001; $$ {\eta}_p^2 $$ηp2 =0.57) both in the elite and trained-recreational athletes. However, only the elite athletes showed significant increases in tension (+ 325%), vigor (+ 31%) and SVS (+ 28%) scores after the intake of CAFF compared to levels recorded under the condition PLAC (p < 0.05). Similarly, levels of vigor after consuming CAFF were significantly higher in the elite than the trained-recreational athletes (+ 5.8%). Conclusions CAFF supplementation improved anaerobic performance in both the elite and recreational athletes. However, the ergogenic effect of CAFF on several mood dimensions and subjective vitality was greater in the elite athletes.
The aim of this study was to analyze the influence of the relative age effect (RAE) on the selection and promotion processes in an elite soccer academy. One hundred and eleven elite youth players who belonged to an elite soccer club from the Spanish “La Liga” participated in this study. Players were classified into three age-categories: under 14 years (U14), under 16 years (U16) and under 18 years (U18); and they were also classified in quartiles based on their date of birth (i.e., January-March, Q1; April-June, Q2; July-September, Q3; October-December, Q4). In addition, two further classification criteria were established based on the selection (i.e., selected and non-selected players) and promotion (i.e., promoted and non-promoted players) processes. The main results showed that in U14 and U16 age-categories, players born early in the year were over-represented compared to players born late in the year, although birth-distribution was not associated with the likelihood of a player to be selected or promoted. In addition, less fat in sum skinfolds, less percentage of fat, higher percentage of muscle and lower endomorphy and mesomorphy components were showed in U14 selected players, in comparison with non-selected players. Likewise, better sprint performance was found in U16 selected players versus non-selected ones. However, no significant differences on anthropometry, body composition, somatotype and physical performance were found between promoted and non-promoted players. Therefore, our results suggest there is need for coaches to reorient their talent identification programs in order to make sure that players selected to continue playing in the club have the potential to promote to the excellence in soccer.
Background Carbohydrate (CHO) and caffeine (CAF) mouth rinsing have been shown to enhance endurance and sprint performance. However, the effects of CHO and CAF mouth rinsing on muscular and cognitive performance in comparison between male and female athletes are less well-established. The aim of this study was to examine the effect of CHO and CAF rinsing on squat and bench press 1 repetition maximum (1-RM) strength, 3 sets of 40% of 1-RM muscular endurance and cognitive performance in both male and female athletes. Methods Thirteen male and fourteen female resistance-trained participants completed four testing sessions following the rinsing of 25 ml of i) 6% of CHO (1.5 g); ii) 2% CAF (500 mg), iii) combined CHO and CAF (CHOCAF) solutions or iv) water (PLA) for 10 s. Heart rate (HR), felt arousal (FA), ratings of perceived exertion (RPE) and glucose (GLU) were recorded throughout the test protocol. Results There were no significant differences in squat and bench press 1-RM, HR, RPE and GLU (p > 0.05) for males and females, respectively. FA was significantly increased with CAF (p = 0.04, p = 0.01) and CHOCAF (p = 0.03, p = 0.01) condition in both males and females, respectively. Squat endurance performance in the first set was significantly increased with CHOCAF condition compared to PLA in both males (p = 0.01) and females (p = 0.02). Bench press endurance was similar for all conditions in both genders (p > 0.05). Cognitive performance was significantly increased with CHOCAF compared to PLA in males (p = 0.03) and females (p = 0.02). Conclusion Combined CHO and CAF mouth rinsing significantly improved lower body muscular endurance and cognitive performance in both males and females.
Dietary nitrate (NO3−) supplementation has been evidenced to induce an ergogenic effect in endurance and sprint-type exercise, which may be underpinned by enhanced muscle contractility and perfusion, particularly in type II muscle fibers. However, limited data are available to evaluate the ergogenic potential of NO3− supplementation during other exercise modalities that mandate type II fiber recruitment, such as weightlifting exercise (i.e., resistance exercise). In this systematic review, we examine the existing evidence basis for NO3− supplementation to improve muscular power, velocity of contraction, and muscular endurance during weightlifting exercise in healthy adults. We also discuss the potential mechanistic bases for any positive effects of NO3− supplementation on resistance exercise performance. Dialnet, Directory of Open Access Journals, Medline, Pubmed, Scielo, Scopus and SPORT Discus databases were searched for articles using the keywords: nitrate or beetroot and supplement or nut*r or diet and strength or “resistance exercise” or “resistance training” or “muscular power”. Four articles fulfilling the inclusion criteria were identified. Two of the four studies indicated that NO3− supplementation could increase aspects of upper body weightlifting exercise (i.e., bench press) performance (increases in mean power/velocity of contraction/number of repetitions to failure), whereas another study observed an increase in the number of repetitions to failure during lower limb weightlifting exercise (i.e., back squat). Although these preliminary observations are encouraging, further research is required for the ergogenic potential of NO3− supplementation on weightlifting exercise performance to be determined.
Objective: The aim of this study was to investigate the effects of caffeine supplementation on: (i) psychological responses of subjective vitality and mood; (ii) performance through a Wingate test; and (iii) rate of perceived exertion (RPE) reported after a Wingate test. Methods: Fifteen male participants (22.60 ± 2.16 years) ingested 6 mg·kg-1 of caffeine or placebo (sucrose) supplementation in two experimental sessions. After 60 min from supplement intake, participants fulfilled two questionnaires, which measured subjective vitality and mood state, respectively. Subsequently, participants’ performance was assessed through a Wingate test, which was followed by measurements of RPE at general, muscular, or cardiovascular level. Results: Caffeine supplementation increased some components of mood, as assessed by profile of mood states (POMS) (tension and vigor dimensions) and subjective vitality profiles, which were followed by a greater maximum power, average power, and lower time needed to reach maximum power during the Wingate test. Moreover, lower RPE, both at muscular and general levels were reported by participants after the Wingate test. Conclusions: These results suggest that caffeine supplementation exerts positive effects both in psychological and physical domains in trained subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.