Objective: The activity of the brain can be recorded by means of an electroencephalogram (EEG). An EEG is a multichannel signal related to brain activity. However, EEG presents a wide variety of undesired artefacts. Removal of these artefacts is often done using blind source separation methods (BSS) and mainly those based on Independent Component Analysis (ICA). ICA-based methods are well-accepted in the literature for filtering artefacts and have proved to be satisfactory in most scenarios of interest. Our goal is to develop a generic and unsupervised ICA-based algorithm for EEG artefacts removal. Approach: The proposed algorithm makes use of a new unsupervised artefact detection, ICA and a statistical criterion to automatically select the artefact related independent components (ICs) requiring no human intervention. The algorithm is evaluated using both simulated and real EEG data with artefacts (SEEG and AEEG). A comparison between the proposed unsupervised selection of ICs related to the artefact and other supervised selection is also presented. Main results: A new unsupervised ICA-based algorithm to filter artefacts, where ICs related to each artefact are automatically selected. It can be used in online applications, it preserves most of the original information among the artefacts and removes different types of artefacts. Significance: ICA-based methods for filtering artefacts prevail in the literature. The work in this article is important insofar as it addresses the problem of automatic selection of ICs in ICA-based methods. The selection is unsupervised, avoiding the manual ICs selection or a learning process involved in other methods. Our method is a generic algorithm that allows removing EEG artefacts of various types and, unlike some ICA-based algorithms, it retains most of the original information among the artefacts. Within the algorithm, the artefact detection method implemented does not require human intervention either.
In this paper, we propose a new unsupervised method to automatically characterize and detect events in multichannel signals. This method is used to identify artifacts in electroencephalogram (EEG) recordings of brain activity. The proposed algorithm has been evaluated and compared with a supervised method. To this end an example of the performance of the algorithm to detect artifacts is shown. The results show that although both methods obtain similar classification, the proposed method allows detecting events without training data and can also be applied in signals whose events are unknown a priori. Furthermore, the proposed method provides an optimal window whereby an optimal detection and characterization of events is found. The detection of events can be applied in real-time.
Information Retrieval (IR) forms the basis of many information management tasks. Information management itself has become an extremely important area as the amount of electronically available information increases dramatically. There are numerous methods of performing the IR task both by utilising different techniques and through using different representations of the information available to us. It has been shown that some algorithms outperform others on certain tasks. Combining the results produced by different algorithms has resulted in superior retrieval performance and this has become an important research area. This paper introduces a probability-based fusion technique probFuse that shows initial promise in addressing this question. It also compares probFuse with the common CombMNZ data fusion technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.