The effect on human skin of over-exposure to solar ultraviolet radiation (UVR) has been well described. The erythema produced is commonly referred to as 'sunburn'. Recently UVR induced inflammation has been utilised as a human model of sub-acute pain. Our aim was to characterise the sensory phenotype of UVB inflammation in human volunteers. We delivered UVB to small areas of volar forearm skin in healthy volunteers and found that the degree of inflammation and concomitant increase in sensitivity to cutaneous stimuli were UVB dose and time dependent. We directly compared UVB induced inflammation and the more established thermal burn and topical capsaicin pain models. UVB inflammation produced precisely demarcated erythematous lesions without secondary flare. Both thermal burns and topical capsaicin produced large areas of flare, indistinguishable in character from the primary lesions. Moreover, UVB inflammation induced large reductions in mechanical pain threshold restricted to the primary lesion site, whereas the more established inflammatory pain models produced not only primary hypersensitivity but also significant areas of secondary mechanical hypersensitivity. Taken together these findings suggest that UVB inflammation, at least using moderate doses produces sensory changes primarily by sensitising peripheral pain processing in the relative absence of alterations in central pain processing.
Acid-sensing ion channels (ASICs) are a class of ion channels activated by extracellular protons and are believed to mediate the pain caused by tissue acidosis. Although ASICs have been widely studied, little is known about their regulation by inflammatory mediators. Here, we provide evidence that nitric oxide (NO) potentiates the activity of ASICs. Whole-cell patch-clamp recordings were performed on neonatal rat cultured dorsal root ganglion neurons and on ASIC isoforms expressed in CHO cells. The NO donor S-nitroso-Nacetylpenicillamine (SNAP) potentiates proton-gated currents in DRG neurons and proton-gated currents in CHO cells expressing each of the acid-sensitive ASIC subunits. Modulators of the cGMP/PKG pathway had no effect on the potentiation, but in excised patches from CHO cells expressing ASIC2a, the potentiation could be reversed by externally applied reducing agents. NO therefore has a direct external effect on the ASIC ion channel, probably through oxidization of cysteine residues. Complementary psychophysiological studies were performed using iontophoresis of acidic solutions through the skin of human volunteers. Topical application of the NO donor glyceryl trinitrate significantly increased acid-evoked pain but did not affect heat or mechanical pain thresholds. ASICs may therefore play an important role in the pain associated with metabolic stress and inflammation, where both tissue acidosis and a high level of NO are present.
Recognition of the chronic and multifocal nature of primary hyperhidrosis is useful for treating hyperhidrosis patients long term and illustrates a need for treatments or treatment combinations that are effective for multiple body areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.