Transient receptor potential canonical type 6 (TRPC6) is a nonselective receptor-operated cation channel that regulates reactive fibrosis and growth signaling. Increased TRPC6 activity from enhanced gene expression or gain-of-function mutations contribute to cardiac and/or renal disease. Despite evidence supporting a pathophysiological role, no orally bioavailable selective TRPC6 inhibitor has yet been developed and tested in vivo in disease models. Here, we report an orally bioavailable TRPC6 antagonist (BI 749327; IC 50 13 nM against mouse TRPC6, t 1/2 8.5-13.5 hours) with 85-and 42-fold selectivity over the most closely related channels, TRPC3 and TRPC7. TRPC6 calcium conductance results in the stimulation of nuclear factor of activated T cells (NFAT) that triggers pathological cardiac and renal fibrosis and disease. BI 749327 suppresses NFAT activation in HEK293T cells expressing wild-type or gain-of-function TRPC6 mutants (P112Q, M132T, R175Q, R895C, and R895L) and blocks associated signaling and expression of prohypertrophic genes in isolated myocytes. In vivo, BI 749327 (30 mg/kg/day, yielding unbound trough plasma concentration ∼180 nM) improves left heart function, reduces volume/mass ratio, and blunts expression of profibrotic genes and interstitial fibrosis in mice subjected to sustained pressure overload. Additionally, BI 749327 dose dependently reduces renal fibrosis and associated gene expression in mice with unilateral ureteral obstruction. These results provide in vivo evidence of therapeutic efficacy for a selective pharmacological TRPC6 inhibitor with oral bioavailability and suitable pharmacokinetics to ameliorate cardiac and renal stress-induced disease with fibrosis. TRPC6 | ion channels | calcium | nuclear factor of activated T cells | fibrosis
High-throughput screening is routinely employed as a method for the identification of novel hit structures. Large numbers of active compounds are typically procured in this way and must undergo a rigorous validation process. This process is described in detail for a collection of screening hits identified as inhibitors of IkappaB kinase-beta (IKKbeta), a key regulatory enzyme in the nuclear factor-kappaB (NF-kappaB) pathway. From these studies, a promising hit series was selected. Subsequent lead generation activities included the development of a pharmacophore hypothesis and structure-activity relationship (SAR) for the hit series. This led to the exploration of related scaffolds offering additional opportunities, and the various structural classes were comparatively evaluated for enzyme inhibition, selectivity, and drug-like properties. A novel lead series of thienopyridines was thereby established, and this series advanced into lead optimization for further development.
Synthesis and structure-activity relationship (SAR) of a series of nonsteroidal glucocorticoid receptor (GR) agonists are described. These compounds contain "diazaindole" moieties and display different transcriptional regulatory profiles in vitro and are considered "dissociated" between gene transrepression and transactivation. The lead optimization effort described in this article focused in particular on limiting the transactivation of genes which result in bone side effects and these were assessed in vitro in MG-63 osteosarcoma cells, leading to the identification of (R)-18 and (R)-21. These compounds maintained anti-inflammatory activity in vivo in collagen induced arthritis studies in mouse but had reduced effects on bone relevant parameters compared to the widely used synthetic glucocorticoid prednisolone 2 in vivo. To our knowledge, we are the first to report on selective glucocorticoid ligands with reduced bone loss in a preclinical in vivo model.
Integration of computational methods, X-ray crystallography, and structure-activity relationships will be disclosed, which lead to a new class of p38 inhibitors that bind to p38 MAP kinase in a Phe out conformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.