We used immunofluorescence techniques to determine the localization of nucleoside diphosphate (NDP) kinase in NIH-3T3 fibroblasts. We found that cytoplasmic NDP kinase can be separated into two populations according to subcellular localization and response to extracellular stimuli. Specifically,within minutes of stimulation of resting fibroblasts with serum, growth factors or bombesin, a portion of NDP kinase becomes associated with membrane ruffles and lamellipodia. Another pool of NDP kinase accumulates independently of stimulation around intracellular vesicles. Transfection of cells with activated Rac mimics, whereas expression of dominant negative Rac inhibits,the effects of extracellular stimulation on the translocation of NDP kinase to the cell cortex. Neither Rac mutant affects the vesicle-associated pool. Association of NDP kinase with vesicles depends on microtubule integrity and is disrupted by nocodazole. In cell-free assays NDP kinase binds tightly to membrane vesicles associated with taxol-stabilized microtubules. Binding of NDP kinase to this fraction is reduced by ATP and abolished by GTP, as well as guanine nucleotides that are NDP kinase substrates. Thus, the localization of the two NDP kinase pools identified here is regulated independently by distinct cellular components: the appearance of cortical NDP kinase is a consequence of Rac activation, whereas vesicular NDP kinase is responsive to microtubule dynamics and nucleotides, in particular GTP. These results suggest that in fibroblasts NDP kinase participates in Rac-related cortical events and in GTP-dependent processes linked to intracellular vesicle trafficking.
Chromatography on immobilized antibodies specific to nucleoside diphosphate (NDP) kinase was utilized for affinity purification of this enzyme from detergent extracts of frog heart post-mitochondrial fractions. SDSpolyacrylamide gel electrophoresis analysis of eluates from these supports shows that five polypeptides copurify with nucleoside diphosphate (NDP) kinase. Tryptic digests of each band were analyzed by mass spectrometric microsequencing. Data base searches by peptide mass matching and sequence homology led to the identification of these proteins as glyceraldehyde-3-phosphate dehydrogenase (40 kDa), creatine kinase (45 kDa), vimentin (55 kDa), pyruvate kinase (60 kDa), and a putative member of the antioxidant protein family (28 kDa). Distinct protein compositions were found in eluates of lung and liver extracts processed in a like manner. The 28-kDa band and vimentin were associated with NDP kinase from all tissues, but co-purification of pyruvate kinase was seen only in liver, while creatine kinase and glyceraldehyde-3-phosphate dehydrogenase were absent from eluates from lung and liver. The results suggest that while NDP kinase is associated with vimentin intermediate filaments and an antioxidant protein in most tissues, it interacts with energy metabolism enzymes in a tissue-specific manner.In recent years NDP kinase 1 has been found to have unexpected roles, in addition to its well known ability to catalyze transfer of phosphate groups from trinucleotides to dinucleotides (1). NDP kinases are involved in growth, differentiation, development, tumor progression, metastasis, and apoptosis (reviewed in Ref. 2). NDP kinase participates in muscarinic K ϩ channel opening (3), is a transcription factor for c-myc (4) and a protein kinase as well (5, 6). These varied functions seem to be accomplished by a limited number of gene products: to date, complete cDNAs encoding 4 human NDP kinases (nm23-H1, nm23-H2, DR-nm23, and nm23-H4) have been identified (7-9).Also, in Dictyostelium a separate nuclear gene encodes a mitochondrial NDP kinase (10). Although other NDP kinase genes may be identified in the future, it is unlikely that each of the multiple functions associated with this protein is performed by a distinct isoform. Differential distribution of NDP kinase isoforms (11) may account for adaptation to the requirements of specific cell types. Additionally, interaction of distinct isoforms with cell-specific factors, conceivably other proteins, could govern NDP kinase function in different tissues. This in turn might explain apparently contradictory findings regarding the connection between NDP kinase and cancer (2): while in some cell types, studies of NDP kinase expression suggest that it has a metastasis suppressor function, in other systems this relation between expression of NDP kinase and metastatic potential is either nonexistent or operates in the opposite direction.The objective of the present work was to identify proteins that interact with NDP kinase in cardiac muscle. Immobilized antibodies to frog ...
3 SUMMARYInmunofluorescence staining of murine NIH3T3 fibroblasts grown at high density shows that conventional nucleoside diphosphate (NDP) kinases A and B localize to a sensory organelle, the primary cilium. Similar results are obtained with Xenopus A6 kidney epithelial cells, suggesting that NDP kinases are a universal component of the primary cilium. The translocation of NDP kinase into primary cilia depends on size, taking place only when cilia reach a critical length of 5-6 μm. In mature cilia, NDP kinases are distributed along the ciliary shaft in a punctate pattern that is distinct from the continuous staining observed with acetylated α-tubulin, a ciliary marker and axonemal component. Isolation of a fraction enriched in primary cilia from A6 cells led to the finding that ciliary NDP kinase is enzymatically active, and is associated with the membrane and the matrix, but not the axoneme. In contrast, acetylated α-tubulin is found in the axoneme and to a lesser extent, in the membrane. Based on the tightly regulated translocation process and the subciliary distribution pattern of NDP kinase, we propose that it plays a role in the elongation and maintenance of primary cilia by its ability to regenerate the GTP utilized by ciliary microtubule turnover and transmembrane signaling.4
Nucleoside diphosphate kinase (NDPK) participates in multiple cellular functions, yet the molecular mechanisms of its involvement are often unknown, given that there are no specific inhibitors for the enzyme from vertebrates. We developed antibodies against NDPK by immunization of rabbits with the enzyme from bullfrog skeletal muscle. The antibodies specifically recognized the enzyme from frog tissues, and cross-reacted with NDPK from Xenopus. In contrast to mammalian NDPK, the amphibian enzyme elicited antibodies that inhibit potently its catalytic function. We utilized the inhibitory properties of these immunoglobulins to examine the role of NDPK on the ATPgammaS-induced stimulation of Ca2+ and K+ currents of cardiac myocytes. Injection of NDPK-neutralizing Fab fragments into atrial cells reduced considerably the effect of ATPgammaS on muscarinic K+ currents, but not on Ca2+ currents. Therefore, ATPgammaS increases calcium and potassium currents of atrial cells by two distinct mechanisms. NDPK is essential for the conversion of ATPgammaS into GTPgammaS which leads to muscarinic K+ channel activation but not for the stimulation of Ca2+ currents by ATPgammaS. The results demonstrate that antibodies to frog NDPK block the activity of the enzyme in vivo and in vitro, and can be used to determine the relevance of NDPK and its catalytic activity to the function of vertebrate cells.
Agonist-bound muscarinic receptors open atrial K+ channels through a GTP-dependent pathway mediated by the G protein Gk. However, nucleotides other than GTP are also able to support channel activity, even in the absence of agonists. This process was proposed to be mediated by nucleoside-diphosphate (NDP) kinase, which would transfer phosphate from nucleotide triphosphates to the GDP bound to Gk, producing Gk-GTP without the need for receptor-induced GDP-GTP exchange. We examined the effect of antibodies to NDP kinase on the ATP-supported activity of atrial muscarinic K+ channels and the corresponding GIRK1/CIR channels expressed in HEK 293 cells. Inhibitory antibodies reduced ATP-induced channel openings, but this effect displayed an absolute requirement for agonist and was also seen with antibodies that do not inhibit the enzyme. Both types of antibodies also reduced agonist-dependent channel activity in the presence of GTP, ruling out a role for NDP kinase in GDP rephosphorylation. Channel activity was not affected by the antibodies in preparations where ATP-induced muscarinic channels are not under tight receptor control, namely pertussis toxin-treated atrial patches and membranes from cells expressing KACh channel subunits. Thus, participation of NDP kinase in this pathway requires activated receptors and has a function distinct from phosphate transfer between nucleotides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.