Sound pressure waves surround individuals in everyday life and are perceived by animals and humans primarily through sound or vibration. When sound pressure waves traverse through a solid medium, vibration will result. Vibration has long been considered an unwanted variable in animal research and may confound scientific endeavors using animals. Understanding the characteristics of vibration is required to determine whether effects in animals are likely to be therapeutic or result in adverse biological effects. The eighth edition of the "Guide for the Care and Use of Laboratory Animals" highlights the importance of considering vibration and its effects on animals in the research setting, but knowledge of the level of vibration for eliciting these effects was unknown. The literature provides information regarding therapeutic use of vibration in humans, but the range of conditions to be of therapeutic benefit is varied and without clarity. Understanding the characteristics of vibration (eg, frequency and magnitude) necessary to cause various effects will ultimately assist in the evaluation of this environmental factor and its role on a number of potential therapeutic regimens for use in humans. This paper will review the principles of vibration, sources within a research setting, comparative physiological effects in various species, and the relative potential use of vibration in the mouse as a translational research model. K E Y W O R D Sanimal models, mice, translational, vibration
Despite documented adverse effects, limits for rodent exposure to vibration in the laboratory animal facility have not been established. This study used female C57BL/6 mice to determine the frequencies of vibration at which mice were most sensitive to behavioral changes, the highest magnitude of vibration that would not cause behavioral changes, the behavioral changes that occur in response to vibration, and the extent to which mice habituate to vibration. Mice were exposed to frequencies of vibration between 20 and 190 Hz at accelerations of 0.05 to 1.0 m/s2. Behavioral responses were videorecorded and subsequently scored. Mice showed the most behavioral responses at 1.0 m/s2. At intermediate accelerations of 0.5 and 0.75 m/s2, behavioral responses were most prevalent at frequencies of 70 to 100 Hz. In contrast, at an acceleration of 0.05 m/s2, mice did not show any discernible behavioral response. Behavioral responses induced by the initiation of vibration were transient, generally lasting only 2 to 10 s. Behaviors in awake mice included abrupt freezing of motion, hunched posture, and surveying the cage environment. In mice that were asleep, responses consisted of lifting the head suddenly with or without prior shifting of body position. When exposed to multiple periods of vibration over a short time, responses seemed to decrease. In summary, mice were particularly sensitive to vibration between 70 to 100 Hz, did not respond to the slowest acceleration (0.05 m/s2), and exhibited transient responses at the initiation of vibration.
Sound and vibration have been shown to alter animal behavior and induce physiological changes as well as to cause effects at the cellular and molecular level. For these reasons, both environmental factors have a considerable potential to alter research outcomes when the outcome of the study is dependent on the animal existing in a normal or predictable biological state. Determining the specific levels of sound or vibration that will alter research is complex, as species will respond to different frequencies and have varying frequencies where they are most sensitive. In consideration of the potential of these factors to alter research, a thorough review of the literature and the conditions that likely exist in the research facility should occur specific to each research study. This review will summarize the fundamental physical properties of sound and vibration in relation to deriving maximal level standards, consider the sources of exposure, review the effects on animals, and discuss means by which the adverse effects of these factors can be mitigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.