Herpes simplex virus (HSV) can perturb the function of dendritic cells (DC). The underlying mechanisms are not defined. In the present study we demonstrate that HSV induces a substantial number of immature DC to undergo apoptosis by a mechanism involving caspase-8. We found strongly enhanced expression of TNF- § and TRAIL but not CD95 ligand after HSV infection. Blocking experiments suggested that these classical death ligands contribute to HSV-induced cell death of immature DC. Because uninfected DC are resistant to the apoptosis-inducing effect of death ligands we searched for a viral "competence-to-die" signal. Further analysis revealed that HSV-infected immature DC down-regulate long cellular FLICE-inhibitory protein (c-FLIP L ) and up-regulate p53 whereas other apoptosis-regulating proteins (e.g. Bcl-2, RIP, FADD) were not affected. Down-regulation of c-FLIP L was not due to diminished gene transcription or reduced mRNA stability because the level of c-FLIP L mRNA was rather increased. Moreover, down-regulation of c-FLIP L could not be blocked by the anti-herpetic drug acyclovir. Finally, the underlying mechanism was also operative in human umbilical vein endothelial cells, which show a similar susceptibility to HSV infection and strength of c-FLIP L expression. These results suggest that HSV targets c-FLIP L protein in immature DC and other infectable cells to disrupt their function.
BackgroundParatuberculosis caused by Mycobacterium avium subsp. paratuberculosis (MAP) is difficult to control due to a long phase of clinically non-apparent (latent) infection for which sensitive diagnostics are lacking. A defined animal model for this phase of the infection can help to investigate host-MAP interactions in apparently healthy animals and identify surrogate markers for disease progress and might also serve as challenge model for vaccines. To establish such a model in goats, different age at inoculation and doses of oral inoculum of MAP were compared. Clinical signs, faecal shedding as well as MAP-specific antibody, IFN-γ and IL-10 responses were used for in vivo monitoring. At necropsy, about one year after inoculation (pi), pathomorphological findings and bacterial organ burden (BOB) were scored.ResultsMAP infection manifested in 26/27 inoculated animals irrespective of age at inoculation and dose. Clinical signs developed in three goats. Faecal shedding, IFN-γ and antibody responses emerged 6, 10–14 and 14 wpi, respectively, and continued with large inter-individual variation. One year pi, lesions were detected in 26 and MAP was cultured from tissues of 23 goats. Positive animals subdivided in those with high and low overall BOB. Intestinal findings resembled paucibacillary lesions in 23 and multibacillary in 4 goats. Caseous and calcified granulomas predominated in intestinal LNN. BOB and lesion score corresponded well in intestinal mucosa and oGALT but not in intestinal LNN.ConclusionsA defined experimental infection model for the clinically non-apparent phase of paratuberculosis was established in goats as suitable basis for future studies.
Massive apoptosis of lymphocytes is a hallmark of sepsis. The resulting immunosuppression is associated with secondary infections, which are often lethal. Moreover, sepsis-survivors are burdened with increased morbidity and mortality for several years after the sepsis episode. The duration and clinical consequences of sepsis induced-immunosuppression are currently unknown. We have used the mouse model of peritoneal contamination and infection (PCI) to investigate the quantitative and qualitative recovery of T lymphocytes for 3.5 months after sepsis with or without IL-7 treatment. Thymic output and the numbers of naive and effector/memory CD4+ and CD8+ lymphocytes quickly recovered after sepsis. IL-7 treatment resulted in an accelerated recovery of CD8+ lymphocytes. Next generation sequencing revealed no significant narrowing of the T cell receptor repertoire 3.5 months after sepsis. In contrast, detailed functional analyses of T helper (Th)-cell responses towards a fungal antigen revealed a significant loss of Th cells. Whereas cytokine production was not impaired at the single cell level, the absolute number of Th cells specific for the fungal antigen was reduced. Our data indicate a clinically relevant loss of pathogen-specific T cell clones after sepsis. Given the small number of naive T lymphocytes specific for a given antigen, this decrement of T cell clones remains undetected even by sensitive methods such as deep sequencing. Taken together, our data are compatible with long lasting impairments in CD4+ T-cell responses after sepsis despite rapid recovery of T lymphocyte populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.