Petroselinum crispum Mill., Fuss., is a culinary vegetable used as an aromatic herb that garnishes and flavours a great variety of dishes. In the present study, the chemical profiles and bioactivities of leaf samples from 25 cultivars (three types: plain- and curly-leafed and turnip-rooted) from this species were assessed. Seven phenolic compounds were identified in all the varieties, including apigenin and kaempherol derivates. Apigenin-O-pentoside-O-hexoside was the major compound in all the tested parsley types (20, 22 and 13 mg/g of extract, respectively) and responsible for its excellent antioxidant activity, also investigated in this study. Antimicrobial activities were also explored, and the results revealed a good bioactivity against specific tested pathogens, such as bacteria and fungi. In conclusion, the leaves of all the types of P. crispum are a good source of natural bioactive compounds that confer health benefits, and thus, they should be part of a balanced and diversified diet.
Moringa oleifera is an edible medicinal plant used to fight malnutrition in Africa. In this study, M. oleifera flowers, fruits and seeds from Guinea-Bissau were characterized for their nutritional composition and hydroethanolic and aqueous extracts were prepared to investigate the phenolic profiles and bioactivities. Seeds presented higher levels of proteins (~31 g/100 g dw), fat (~26 g/100 g dw) and flavan-3-ol derivatives, while carbohydrates, proteins, citric acid, and glycosylated flavonoids were abundant in fruits and flowers, these last samples also being rich in α-tocopherol (~18 mg/100 g dw). Some of the identified polyphenols had never been described in M. oleifera. In general, hydroethanolic extracts contained more polyphenols and were more active against lipid peroxidation, NO production, and tumour cells growth. Significant antimicrobial effects against the tested bacteria and fungi strains were displayed by both hydroethanolic and aqueous extracts. The M. oleifera potential to fight malnutrition and health issues was highlighted.
Iron deficiency remains one of the main nutritional disorders worldwide and low iron intake and/or bioavailability are currently the major causes of anemia. To fight this public health problem, the scientific challenge is to find an iron form with sufficient bioavailability to increase its levels in humans through food fortification. In turn, biofortification appears as a comparatively advantageous and bearable strategy for the delivery of vitamins and other micronutrients for people without access to a healthy and diverse diet. This approach relies on plant breeding, transgenic techniques, or agronomic practices to obtain a final food product with a higher iron content. It is also known that certain food constituents are able to favor or inhibit iron absorption. The management of these compounds can thus successfully improve the absorption of dietary iron and, ultimately, contribute to fight this disorder present all over the world. This review describes the main causes/manifestations of iron-deficiency anemia, forms of disease prevention and treatment, and the importance of a balanced and preventive diet. A special focus was given to innovative food fortification and biofortification procedures used to improve the iron content in staple food crops.
The use of natural products to promote health is as old as human civilization. In recent years, the perception of natural products derived from plants as abundant sources of biologically active compounds has driven their exploitation towards the search for new chemical products that can lead to further pharmaceutical formulations. Candida fungi, being opportunistic pathogens, increase their virulence by acquiring resistance to conventional antimicrobials, triggering diseases, especially in immunosuppressed hosts. They are also pointed to as the main pathogens responsible for most fungal infections of the oral cavity. This increased resistance to conventional synthetic antimicrobials has driven the search for new molecules present in plant extracts, which have been widely explored as alternative agents in the prevention and treatment of infections. This review aims to provide a critical view and scope of the in vitro antimicrobial and antibiofilm activity of several medicinal plants, revealing species with inhibition/reduction effects on the biofilm formed by Candida spp. in the oral cavity. The most promising plant extracts in fighting oral biofilm, given their high capacity to reduce it to low concentrations were the essential oils extracted from Allium sativum L., Cinnamomum zeylanicum Blume. and Cymbopogon citratus (DC) Stapf.
The use of medicinal plants in a variety of health conditions remains essential for the discovery of new treatments. The present study aimed to investigate the bioactive properties of three native plants from Cabo Verde Islands, namely Artemisia gorgonum Webb, Sideroxylon marginatum (Decne. ex Webb) Cout., and Tamarix senegalensis DC., contributing to the characterization of less-known medicinal plants and their potential benefits for human health. Known compounds, such as kaempferol, quercetin, caffeyolquinic, and apigenin derivatives, among others, were detected in the plant species under study. Overall, all species demonstrated good antioxidant capacity, especially the ethanolic extracts of A. gorgonum (EC50 = 0.149 mg/mL) in TBARS assay. Moreover, the ethanolic extracts of the studied plants showed cytotoxic properties against tumor cells, and again the A. gorgonum extract proved to be the most effective in inhibiting tumor growth, mainly in the CaCO2 (GI50 = 17.3 μg/mL) and AGS (GI50 = 18.2 μg/mL) cell lines. Only the ethanolic extracts of T. senegalensis and S. marginatum demonstrated anti-inflammatory activity, albeit weak (EC50 = 35 and 43 μg/mL, respectively). The present study contributed to increased knowledge about the bioactive properties of these plants commonly used in traditional medicine, some of which was discussed for the first time, opening new perspectives for their use in a wider range of health conditions, especially in African countries, where access to modern health care is more limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.