In this paper we present the findings of a systematic literature review covering the articles published in the last two decades in which the authors described the application of a machine learning technique and method to an orthopedic problem or purpose. By searching both in the Scopus and Medline databases, we retrieved, screened and analyzed the content of 70 journal articles, and coded these resources following an iterative method within a Grounded Theory approach. We report the survey findings by outlining the articles' content in terms of the main machine learning techniques mentioned therein, the orthopedic application domains, the source data and the quality of their predictive performance.
Abstract-"Ontology matching" is the process of finding correspondences between entities belonging to different ontologies. This paper describes a set of algorithms that exploit upper ontologies as semantic bridges in the ontology matching process and presents a systematic analysis of the relationships among features of matched ontologies (number of simple and composite concepts, stems, concepts at the top level, common English suffixes and prefixes, ontology depth), matching algorithms, used upper ontologies, and experiment results. This analysis allowed us to state under which circumstances the exploitation of upper ontologies gives significant advantages with respect to traditional approaches that do no use them. We run experiments with SUMO-OWL (a restricted version of SUMO), OpenCyc and DOLCE. The experiments demonstrate that when our "structural matching method via upper ontology" uses an upper ontology large enough (OpenCyc, SUMO-OWL), the recall is significantly improved while preserving the precision obtained without upper ontologies. Instead, our "non structural matching method" via OpenCyc and SUMO-OWL improves the precision and maintains the recall. The "mixed method" that combines the results of structural alignment without using upper ontologies and structural alignment via upper ontologies improves the recall and maintains the F-measure independently of the used upper ontology.
Context-based matching finds correspondences between entities from two ontologies by relating them to other resources. A general view of context-based matching is designed by analysing existing such matchers. This view is instantiated in a path-driven approach that (a) anchors the ontologies to external ontologies, (b) finds sequences of entities (path) that relate entities to match within and across these resources, and (c) uses algebras of relations for combining the relations obtained along these paths. Parameters governing such a system are identified and made explicit. They are used to conduct experiments with different parameter configurations in order to assess their influence. In particular, experiments confirm that restricting the set of ontologies reduces the time taken at the expense of recall and Fmeasure. Increasing path length within ontologies increases recall and F-measure as well. In addition, algebras of relations allows for a finer analysis, which shows that increasing path length provides more correct or non precise correspondences, but marginally increases incorrect correspondences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.