Lacasses are multicopper oxidases that can catalyze aromatic and non-aromatic compounds concomitantly with reduction of molecular oxygen to water. Fungal laccases have generated a growing interest due to their biotechnological potential applications, such as lignocellulosic material delignification, biopulping and biobleaching, wastewater treatment, and transformation of toxic organic pollutants. In this work we selected fungal genes encoding for laccase enzymes GlLCC1 in Ganoderma lucidum and POXA 1B in Pleurotus ostreatus. These genes were optimized for codon use, GC content, and regions generating secondary structures. Laccase proposed computational models, and their interaction with ABTS [2, 2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)] substrate was evaluated by molecular docking. Synthetic genes were cloned under the control of Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase (GAP) constitutive promoter. P. pastoris X-33 was transformed with pGAPZαA-LaccGluc-Stop and pGAPZαA-LaccPost-Stop constructs. Optimization reduced GC content by 47 and 49% for LaccGluc-Stop and LaccPost-Stop genes, respectively. A codon adaptation index of 0.84 was obtained for both genes. 3D structure analysis using SuperPose revealed LaccGluc-Stop is similar to the laccase crystallographic structure 1GYC of Trametes versicolor. Interaction analysis of the 3D models validated through ABTS, demonstrated higher substrate affinity for LaccPost-Stop, in agreement with our experimental results with enzymatic activities of 451.08 ± 6.46 UL-1 compared to activities of 0.13 ± 0.028 UL-1 for LaccGluc-Stop. This study demonstrated that G. lucidum GlLCC1 and P. ostreatus POXA 1B gene optimization resulted in constitutive gene expression under GAP promoter and α-factor leader in P. pastoris. These are important findings in light of recombinant enzyme expression system utility for environmentally friendly designed expression systems, because of the wide range of substrates that laccases can transform. This contributes to a great gamut of products in diverse settings: industry, clinical and chemical use, and environmental applications.
In this work, we statistically improved culture media for rPOXA 1B laccase production, expressed in Pichia pastoris containing pGAPZαA-LaccPost-Stop construct and assayed at 10 L bioreactor production scale (6 L effective work volume). The concentrated enzyme was evaluated for temperature and pH stability and kinetic parameter, characterized by monitoring oxidation of different ABTS [2,] substrate concentrations. Plackett-Burman experimental design (PBED) implementation improved previous work results by 3.05-fold, obtaining a laccase activity of 1373.72 ± 0.37 U L −1 at 168 h of culture in a 500 mL shake flask. In contrast, one factor experimental design (OFED) applied after PBED improved by threefold the previous study, additionally increasing the C/N ratio. Employing OFED media at 10 L bioreactor scale was capable of producing 3159.93 ± 498.90 U L −1 at 192 h, representing a 2.4-fold increase. rPOXA 1B concentrate remained stable between 10 and 50 °C and retained over 70% residual enzymatic activity at 60 °C and 50% at 70 °C. Concerning pH stability, the enzyme was stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity (60%) was obtained at pH 10.0 ± 0.2. Furthermore, the apparent kinetic parameters were V max of 3.163 × 10 −2 mM min −1 and K m of 1.716 mM. Collectively, regarding enzyme stability our data provide possibilities for applications involving a wide range of pH and temperatures. Keywords Plackett-Burman experimental design • One-factor experimental design • Pichia pastoris • Recombinant laccase • Enzyme stability • Enzyme kinetics Abbreviations MCOs Multicopper oxidases ABTS 2, 20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) PBL Pulping black liquor LDPE Low density polyethylene pAOX1 Alcohol oxidase promoter pGAP Glyceraldehyde-3-phosphate dehydrogenase promoter POXA 1B Laccase from P. ostreatus rPOXA 1B Recombinant laccase from P. ostreatus V max Maximum reaction rate K M Michaelis constant YPG Yeast extract, peptone and glucose culture media MCB Master cell bank YPG-Z Yeast extract, peptone, glucose-zeocin culture media EWV Effective work volume PBED Plackett-Burman experimental design OFED One-factor experimental design v.v.m. Air volume per media volume µ x Specific growth rate T d Duplication time r.p.m. Revolutions per minute Y (x/s) Biomass/substrate yield Y (p/s) Enzyme/substrate yield P (x) Biomass productivity P (p) Enzyme productivity SD Standard deviation GFP Green fluorescent protein
Laccases are multicopper oxidases that catalyze aromatic and nonaromatic compounds with concomitant reduction of molecular oxygen to water. They are of great interest due to their potential biotechnological applications. In this work we statistically improved culture media for recombinant GILCC1 (rGILCC1) laccase production at low scale from Ganoderma lucidum containing the construct pGAPZαA-GlucPost-Stop in Pichia pastoris. Temperature, pH stability, and kinetic parameter characterizations were determined by monitoring concentrate enzyme oxidation at different ABTS substrate concentrations. Plackett-Burman Design allowed improving enzyme activity from previous work 36.08-fold, with a laccase activity of 4.69 ± 0.39 UL−1 at 168 h of culture in a 500 mL shake-flask. Concentrated rGILCC1 remained stable between 10 and 50°C and retained a residual enzymatic activity greater than 70% at 60°C and 50% at 70°C. In regard to pH stability, concentrated enzyme was more stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity greater than 55% was obtained at pH 10.0 ± 0.2. Furthermore, calculated apparent enzyme kinetic parameters were a Vmax of 6.87 × 10−5 mM s−1, with an apparent Km of 5.36 × 10−2 mM. Collectively, these important stability findings open possibilities for applications involving a wide pH and temperature ranges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.