Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here, we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores and that the global distribution of plant diversity contributes to but does not fully explain the latitudinal gradient in insect herbivore specialization.
What are the ecological causes and consequences of variation in phytochemical diversity within and between plant taxa? Despite decades of natural products discovery by organic chemists and research by chemical ecologists, our understanding of phytochemically mediated ecological processes in natural communities has been restricted to studies of either broad classes of compounds or a small number of well-characterized molecules. Until now, no studies have assessed the ecological causes or consequences of rigorously quantified phytochemical diversity across taxa in natural systems. Consequently, hypotheses that attempt to explain variation in phytochemical diversity among plants remain largely untested. We use spectral data from crude plant extracts to characterize phytochemical diversity in a suite of co-occurring plants in the tropical genus Piper (Piperaceae). In combination with 20 years of data focused on Piper-associated insects, we find that phytochemical diversity has a direct and positive effect on the diversity of herbivores but also reduces overall herbivore damage. Elevated chemical diversity is associated with more specialized assemblages of herbivores, and the cascading positive effect of phytochemistry on herbivore enemies is stronger as herbivore diet breadth narrows. These results are consistent with traditional hypotheses that predict positive associations between plant chemical diversity, insect herbivore diversity, and trophic specialization. It is clear from these results that high phytochemical diversity not only enhances the diversity of plant-associated insects but also contributes to the ecological predominance of specialized insect herbivores.he Anthropocene has been characterized by huge losses of biodiversity caused by rapid global change, including habitat loss, fragmentation, invasive species, and climate change. Ecologists struggle to understand not only the consequences of diversity loss but also how to quantify ecologically relevant dimensions of diversity, including genetic, taxonomic, and functional diversity. Although it has been difficult to measure, phytochemical diversity (i.e., richness and abundance of plant compounds) is a key axis of functional diversity (1) that affects associated trophic levels and is likely driving other aspects of biodiversity (2-4). Variation in phytochemical or metabolic diversity in plants, which is further downstream than genomic, transcriptomic, or proteomic diversity (5, 6), potentially reflects variation in response to a diversity of natural enemies, including specialist and generalist insect herbivores (7,8). Furthermore, phytochemistry is one of the most relevant traits to measure when determining functional roles of plants in natural and managed communities (9).Considering the importance of phytochemical diversity for numerous natural processes, it is not surprising that a broad range of ecological and evolutionary hypotheses has been proposed to explain their role in interactions between plants and herbivores. From a coevolutionary perspecti...
Selective pressures from host plant chemistry and natural enemies may contribute independently to driving insect herbivores towards narrow diet breadths. We used the specialist caterpillar, Junonia coenia (Nymphalidae), which sequesters defensive compounds, iridoid glycosides, from its host plants to assess the effects of plant chemistry and sequestration on the larval immune response. A series of experiments using implanted glass beads to challenge immune function showed that larvae feeding on diets with high concentrations of iridoid glycosides are more likely to have their immune response compromised than those feeding on diets low in these compounds. These results indicate that larvae feeding on plants with high concentrations of toxins might be more poorly defended against parasitoids, while at the same time being better defended against predators, suggesting that predators and parasitoids can exert different selective pressures on the evolution of herbivore diet breadth.
Abstract. Parasitic wasps and flies (parasitoids) exert high mortality on caterpillars, and previous studies have demonstrated that most primary and secondary defenses do not protect caterpillars against parasitoids. We investigated the efficacy of tertiary defenses (i.e., immune responses) against parasitoids. Using a bead injection technique to measure the immune response and a 15-year database to measure parasitism, we compared the immune response for 16 species of caterpillars in nine different families. We found that caterpillar species with a strong immune response had the lowest incidence of parasitism, and when statistically compared to other defensive traits, the immune response was the best predictor of parasitism. Parasitoids either avoid attacking caterpillar species with a capacity for high levels of melanization or are killed once they have parasitized. In either case, the immune response is clearly one of the most effective defenses that caterpillars have against parasitism, and elucidating consistent predictors of variation in encapsulation could improve understanding of parasitism patterns in time and space and could enhance biological control efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.