Single-chain variable fragments (scFvs) expressed as “intracellular antibodies” (intrabodies) can target intracellular antigens to hamper their function efficaciously and specifically. Here we use an intrabody targeting the E6 oncoprotein of Human papillomavirus 16 (HPV16) to address the issue of a non-invasive therapy for HPV cancer patients.A scFv against the HPV16 E6 was selected by Intracellular Antibody Capture Technology and expressed as I7nuc in the nucleus of HPV16-positive SiHa, HPV-negative C33A and 293T cells. Colocalization of I7nuc and recombinant E6 was observed in different cell compartments, obtaining evidence of E6 delocalization ascribable to I7nuc. In SiHa cells, I7nuc expressed by pLNCX retroviral vector was able to partially inhibit degradation of the main E6 target p53, and induced p53 accumulation in nucleus. When analyzing in vitro activity on cell proliferation and survival, I7nuc was able to decrease growth inducing late apoptosis and necrosis of SiHa cells.Finally, I7nuc antitumor activity was demonstrated in two pre-clinical models of HPV tumors. C57BL/6 mice were injected subcutaneously with HPV16-positive TC-1 or C3 tumor cells, infected with pLNCX retroviral vector expressing or non-expressing I7nuc. All the mice injected with I7nuc-expressing cells showed a clear delay in tumor onset; 60% and 40% of mice receiving TC-1 and C3 cells, respectively, remained tumor-free for 17 weeks of follow-up, whereas 100% of the controls were tumor-bearing 20 days post-inoculum. Our data support the therapeutic potential of E6-targeted I7nuc against HPV tumors.
Human papillomavirus (HPV)-associated tumors still represent an urgent problem of public health in spite of the efficacy of the prophylactic HPV vaccines. Specific antibodies in single-chain format expressed as intracellular antibodies (intrabodies) are valid tools to counteract the activity of target proteins. We previously showed that the M2SD intrabody, specific for the E7 oncoprotein of HPV16 and expressed in the endoplasmic reticulum of the HPV16-positive SiHa cells, was able to inhibit cell proliferation. Here, we showed by confocal microscopy that M2SD and E7 colocalize in the endoplasmic reticulum of SiHa cells, suggesting that the E7 delocalization mediated by M2SD could account for the anti-proliferative activity of the intrabody. We then tested the M2SD antitumor activity in two mouse models for HPV tumors based respectively on TC-1 and C3 cells. The M2SD intrabody was delivered by retroviral vector to tumor cells before cell injection into C57BL/6 mice. In both models, a marked delay of tumor onset with respect to the controls was observed in all the mice injected with the M2SD-expressing tumor cells and, importantly, a significant percentage of mice remained tumor-free permanently. This is the first in vivo demonstration of the antitumor activity of an intrabody directed towards an HPV oncoprotein. We consider that these results could contribute to the development of new therapeutic molecules based on antibodies in single-chain format, to be employed against the HPV-associated lesions even in combination with other drugs.Human papillomaviruses (HPVs) belonging to 15 genotypes defined as "high risk," are the recognized cause of an increasing number of malignancies among which cervical cancer (CC) is the most represented in women worldwide.1,2 Despite the high protective efficacy of the HPV vaccine, expected to reduce the number of HPV-associated cancers in the coming decades, non-invasive therapies are urgently needed for avoiding overtreatment of pre-tumor lesions and preventing or treating metastatic lesions in the case of established tumors, particularly for the treatment of immunosuppressed people. 3The E6 and E7 oncoproteins of the high risk genotypes are tumor-specific antigens expressed in tumors and precursor lesions; they contribute to viral immunoevasion and act in concert to promote tumor development through the interaction with multiple cellular proteins. The E7 mainly affects factors involved in proliferation and cell cycle regulation, such as the retinoblastoma (pRb) and the whole pocket proteins family, the p21 and p27 cyclin-dependent kinase inhibitors, and the cyclins A and E, whereas the E6 binds to the p53 tumor suppressor through the E6-AP and to Bak proteins to ensure hampering of cell apoptosis.4,5 Therefore, E6 and E7 represent ideal targets for antitumor therapeutic interventions. Several approaches were and are currently explored to counteract the oncoproteins at gene or protein level. 6 In the last decades, emerged the possibility of designing drugs based on antibodies again...
Cell death by apoptosis was analysed in HeLa cells either treated with the antitumoral drug bleomycin or depleted of growth factors by long-term culture without medium change. The interference of apoptosis with normal cell cycle progression was followed by flow cytometry in cells stained with propidium iodide and with antibody to S-phase-related PCNA protein. Bleomycin-treated cells showed a net accumulation in G2/M phase paralleled by the appearance of material with a subdiploid DNA content. Cells with a subdiploid DNA content were also present in growth factor-depleted cultures and were shown to derive from all the cell cycle phases. To identify apoptotic features in HeLa cell cultures, we applied a recently developed assay based on the simultaneous analysis in the single cell of three parameters, namely chromatin condensation, DNA degradation and poly(ADP-ribose) synthesis. Apoptotic cells were visualized by sequential reactions: Hoechst staining, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labelling assay and immunoreaction with anti-poly(ADP-ribose) monoclonal antibody. Positive reactions were obtained for cells at different stages of the apoptotic programme showing condensed nuclei, fragmented chromatin and apoptotic bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.