This study aimed to characterize the endometrial transcriptome and functional pathways overrepresented in the endometrium of cows treated to ovulate larger (≥13 mm) versus smaller (≤12 mm) follicles. Nelore cows were presynchronized prior to receiving cloprostenol (large follicle [LF] group) or not (small follicle [SF] group), along with a progesterone (P4) device on Day (D) -10. Devices were withdrawn and cloprostenol administered 42-60 h (LF) or 30-36 h (SF) before GnRH agonist treatment (D0). Tissues were collected on D4 (experiment [Exp.] 1; n = 24) or D7 (Exp. 2; n = 60). Endometrial transcriptome was obtained by RNA-Seq, whereas proliferation and apoptosis were assessed by immunohistochemistry. Overall, LF cows developed larger follicles and corpora lutea, and produced greater amounts of estradiol (D-1, Exp. 1, SF: 0.7 ± 0.2; LF: 2.4 ± 0.2 pg/ml; D-1, Exp. 2, SF: 0.5 ± 0.1; LF: 2.3 ± 0.6 pg/ml) and P4 (D4, Exp. 1, SF: 0.8 ± 0.1; LF: 1.4 ± 0.2 ng/ml; D7, Exp. 2, SF: 2.5 ± 0.4; LF: 3.7 ± 0.4 ng/ml). Functional enrichment indicated that biosynthetic and metabolic processes were enriched in LF endometrium, whereas SF endometrium transcriptome was biased toward cell proliferation. Data also suggested reorganization of the extracellular matrix toward a proliferation-permissive phenotype in SF endometrium. LF endometrium showed an earlier onset of proliferative activity, whereas SF endometrium expressed a delayed increase in glandular epithelium proliferation. In conclusion, the periovulatory endocrine milieu regulates bovine endometrial transcriptome and seems to determine the transition from a proliferation-permissive to a biosynthetic and metabolically active endometrial phenotype, which may be associated with the preparation of an optimally receptive uterine environment.
In cattle, molecular control of oviduct receptivity to the embryo is poorly understood. Here, we used a bovine model for receptivity based on size of the pre-ovulatory follicle to compare oviductal global and candidate gene transcript abundance on day 4 of the estrous cycle. Growth of the pre-ovulatory follicle (POF) of Nelore (Bos indicus) cows was manipulated to produce two groups: large POF large corpus luteum (CL) group (LF-LCL; greater receptivity) and small POF-small CL group (SF-SCL). Oviductal samples were collected four days after GnRH-induced ovulation. Ampulla and isthmus transcriptome was obtained by RNA-seq, regional gene expression was assessed by qPCR, and PGR and ERa protein distribution was evaluated by immunohistochemistry. There was a greater abundance of PGR and ERa in the oviduct of LF-LCL animals thus indicating a greater availability of receptors and possibly sex steroids stimulated signaling in both regions. Transcriptomic profiles indicated a series of genes associated with functional characteristics of the oviduct that are regulated by the periovulatory sex steroid milieu and that potentially affect oviductal receptivity and early embryo development. They include tissue morphology changes (extra cellular matrix remodeling), cellular changes (proliferation), and secretion changes (growth factors, ions and metal transporters), and were enriched for the genes with increased expression in the LF-LCL group. In conclusion, differences in the periovulatory sex steroid milieu lead to different oviductal gene expression profiles that could modify the oviductal environment to affect embryo survival and development.
Pregnancy success is critical to the profitability of cattle operations. However, the molecular events driving the uterine tissue towards embryo receptivity are poorly understood. This study aimed to characterize the uterine transcriptome profiles of pregnant (P) versus non-pregnant (NP) cows during early pregnancy and attempted to define a potential set of marker genes that can be valuable for predicting pregnancy outcome. Therefore, beef cows were synchronized (n=51) and artificially inseminated (n=36) at detected estrus. Six days after AI (D6), jugular blood samples and a biopsy from the uterine horn contralateral to the ovary containing the corpus luteum were collected. Based on pregnancy outcome on D30, samples were retrospectively allocated to the following groups: P (n=6) and NP (n=5). Both groups had similar plasma progesterone concentrations on D6. Uterine biopsies were submitted to RNA-Seq analysis in a Illumina platform. The 272,685,768 million filtered reads were mapped to the Bos Taurus reference genome and 14,654 genes were analyzed for differential expression between groups. Transcriptome data showed that 216 genes are differently expressed when comparing NP versus P uterine tissue (Padj≤0.1). More specifically, 36 genes were up-regulated in P cows and 180 are up-regulated in NP cows. Functional enrichment and pathway analyses revealed enriched expression of genes associated with extracellular matrix remodeling in the NP cows and nucleotide binding, microsome and vesicular fraction in the P cows. From the 40 top-ranked genes, the transcript levels of nine genes were re-evaluated using qRT-PCR. In conclusion, this study characterized a unique set of genes, expressed in the uterus 6 days after insemination, that indicate a receptive state leading to pregnancy success. Furthermore, expression of such genes can be used as potential markers to efficiently predict pregnancy success.
In cattle, the oviduct is a tubular organ that connects the ovary and the uterus. The oviduct lumen stages a dynamic set of cellular and molecular interactions to fulfill the noble role of generating a new individual. Specific anatomical niches along the oviduct lumen provide the appropriate microenvironment for final sperm capacitation, oocyte capture and fertilization, and early embryo development and transport. To accomplish such complex tasks, the oviduct undergoes spatially and temporally-regulated morphological, biochemical, and physiological changes that are associated with endocrine events of the estrous cycle. Specifically, elevated periovulatory concentrations of estradiol (E2) and progesterone (P4) influence gene expression and morphological changes that have been associated positively to fertility in beef cattle. In this review, we explore how E2 and P4 influence oviductal function in the beginning of the estrous cycle, and prepare the oviductal lumen for interactions with gametes and embryos.
In cattle, conceptus development after elongation relies on well-characterized, paracrine interactions with the hosting maternal reproductive tract. However, it was unrecognized previously that the pre-hatching, pre-implantation bovine embryo also engages in biochemical signalling with the maternal uterus. Our recent work showed that the embryo modified the endometrial transcriptome in vivo . Here, we hypothesized that the embryo modulates the biochemical composition of the uterine luminal fluid (ULF) in the most cranial portion of the uterine horn ipsilateral to the corpus luteum. Endometrial samples and ULF were collected post-mortem from sham-inseminated cows and from cows inseminated and detected pregnant 7 days after oestrus. We used quantitative mass spectrometry to demonstrate that the pre-hatching embryo changes ULF composition in vivo . Embryo-induced modulation included an increase in concentrations of lipoxygenase-derived metabolites [12(S)-HETE, 15(S)-HETE] and a decrease in the concentrations of amino acids (glycine), biogenic amines (sarcosine), acylcarnitines and phospholipids. The changed composition of the ULF could be due to secretion or depletion of specific molecules, executed by either the embryo or the endometrium, but initiated by signals coming from the embryo. This study provides the basis for further understanding embryo-initiated modulation of the uterine milieu. Early embryonic signalling may be necessary to guarantee optimal development and successful establishment of pregnancy in cattle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.