Recent serologic, immunoprotection, and pathogenesis studies identified the Lig proteins as key virulence determinants in interactions of leptospiral pathogens with the mammalian host. We examined the sequence variation and recombination patterns of ligA, ligB, and ligC among 10 pathogenic strains from five Leptospira species. All strains were found to have intact ligB genes and genetic drift accounting for most of the ligB genetic diversity observed. The ligA gene was found exclusively in L. interrogans and L. kirschneri strains, and was created from ligB by a two-step partial gene duplication process. The aminoterminal domain of LigB and the LigA paralog were essentially identical (98.5 ± 0.8% mean identity) in strains with both genes. Like ligB, ligC gene variation also followed phylogenetic patterns, suggesting an early gene duplication event. However, ligC is a pseudogene in several strains, suggesting that LigC is not essential for virulence. Two ligB genes and one ligC gene had mosaic compositions and evidence for recombination events between related Leptospira species was also found for some ligA genes. In conclusion, the results presented here indicate that Lig diversity has important ramifications for the selection of Lig polypeptides for use in diagnosis and as vaccine candidates. This sequence information will aid the identification of highly conserved regions within the Lig proteins and improve upon the performance characteristics of the Lig proteins in diagnostic assays and in subunit vaccine formulations with the potential to confer heterologous protection.
The family of leptospiral immunoglobulin-like (lig) genes comprises ligA, ligB and ligC. This study used PCR to demonstrate the presence of lig genes among serovars from a collection of leptospiral strains and clinical isolates. Whilst ligA and ligC appeared to be present in a limited number of pathogenic serovars, the ligB gene was distributed ubiquitously among all pathogenic strains. None of the lig genes were detected among intermediate or saprophytic Leptospira species. It was also shown that, similar to the previously characterized secY gene, a short specific PCR fragment of ligB could be used to correctly identify pathogenic Leptospira species. These findings demonstrate that ligB is widely present among pathogenic strains and may be useful for their reliable identification and classification.
BackgroundImmunomagnetic separation (IMS) and immunoassays are widely used for pathogen detection. However, novel technology platforms with highly selective antibodies are essential to improve detection sensitivity, specificity and performance. In this study, monoclonal antibodies (MAbs) against Internalin A (InlA) and p30 were generated and used on paramagnetic beads of varying diameters for concentration, as well as on fiber-optic sensor for detection.ResultsAnti-InlA MAb-2D12 (IgG2a subclass) was specific for Listeria monocytogenes and L. ivanovii, and p30-specific MAb-3F8 (IgM) was specific for the genus Listeria. At all bacterial concentrations (103–108 CFU/mL) tested in the IMS assay; the 1-μm diameter MyOne beads had significantly higher capture efficiency (P < 0.05) than the 2.8-μm diameter M-280 beads with both antibodies. The highest capture efficiency for MyOne-2D12 (49.2% for 105 CFU/mL) was significantly higher (P < 0.05) than that of MyOne-3F8 (16.6 %) and Dynabeads anti-Listeria antibody (9 %). Furthermore, capture efficiency for MyOne-2D12 was highly specific for L. monocytogenes and L. ivanovii. Subsequently, we captured L. monocytogenes by MyOne-2D12 and MyOne-3F8 from hotdogs inoculated with mono- or co-cultures of L. monocytogenes and L. innocua (10–40 CFU/g), enriched for 18 h and detected by fiber-optic sensor and confirmed by plating, light-scattering, and qPCR assays. The detection limit for L. monocytogenes and L. ivanovii by the fiber-optic immunosensor was 3 × 102 CFU/mL using MAb-2D12 as capture and reporter antibody. Selective media plating, light-scattering, and qPCR assays confirmed the IMS and fiber-optic results.ConclusionsIMS coupled with a fiber-optic sensor using anti-InlA MAb is highly specific for L. monocytogenes and L. ivanovii and enabled detection of these pathogens at low levels from buffer or food.
Leptospirosis is a zoonotic disease that occurs worldwide and is caused by pathogenic bacteria of the genus Leptospira. Clinical manifestations of leptospirosis are similar to other febrile illnesses and this fact frequently retards the beginning of antibiotic therapy. Thus, early and accurate diagnosis is a prerequisite for proper treatment of leptospirosis. Antigen and DNA-based detection tests offer potential advantage over tests based on antibody detection for early diagnosis of leptospirosis since antibodies only reach detectable levels several days after the onset of the infection. This work describes a method for detection of pathogenic Leptospira that associates an immunoseparation step with a PCR assay and uses an internal amplification control (IAC) to ensure accuracy of the test. The immunoseparation was performed with protein A-magnetic beads in house coated with an MAb specific for LipL32, the major outer membrane protein of pathogenic Leptospira; PCR was performed using lipL32 specific primers. The IMS-PCR method enhanced detection of Leptospira in experimentally contaminated human sera and urine when compared to PCR performed alone. IMS-PCR was able to detect 10(2) Leptospira cells per mL of human sera and urine, corresponding to 25 genomic copies per PCR reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.