An increased risk for multiple sclerosis and schizophrenia is observed at increasing latitude and in patients born in winter or spring. To explore a possible link between maternal vitamin D deficiency and these brain disorders, we examined the impact of prenatal hypovitaminosis D on protein expression in the adult rat brain. Vitamin D-deficient female rats were mated with vitamin D normal males. Pregnant females were kept vitamin D-deficient until birth whereupon they were returned to a control diet. At week 10, protein expression in the progeny's prefrontal cortex and hippocampus was compared with control animals using silver staining 2-D gels associated with MS and newly devised data mining software. Developmental vitamin D (DVD) deficiency caused a dysregulation of 36 brain proteins involved in several biological pathways including oxidative phosphorylation, redox balance, cytoskeleton maintenance, calcium homeostasis, chaperoning, PTMs, synaptic plasticity and neurotransmission. A computational analysis of these data revealed that (i) nearly half of the molecules dysregulated in our animal model have also been shown to be misexpressed in either schizophrenia and/or multiple sclerosis and (ii) an impaired synaptic network may be a consequence of mitochondrial dysfunction.
Background: This is a study about the skin ageing exposome, focusing on the effect of cigarette smoke. Human living skin explants (HSE) were exposed to cigarette smoke (CS) of two cigarettes for 2 hours using a custom-made exposure chamber, the Pollubox ® . Effects on the surface physico-chemistry and molecular properties of the skin were analyzed and reported for the first time.Basic Procedures: To this end, transcriptomic study followed by immunohistochemistry, MDA (Malondialdehyde Dosage), and surface physio-chemistry data: surface free energy determination, TEWL (Trans Epidermal Water Loss), skin pH and FT-IR (Fourier Transform-Infrared) spectroscopy of the explant were collected from untreated and treated HSE.Main Findings: Results showed a decrease of the total surface free energy of the treated HSE. This decrease reflected higher interactions with polar compounds from the environment and consequently a decrease of the surface hydrophobicity.Additionally, an increase of TEWL and skin pH was observed after treatment.The transcriptomic analysis showed downregulation of mitochondrial genes (PON2-NDUFA4L2-ATP1A1-ALDH2-PRODH) combined with an increase of MDA in CStreated HSE.Conclusions: CS-induced oxidation of lipids at HSE surface alters the skin barrier: interactions with polar products are enhanced and the lipid chain packing at the surface is modified. Consequently, skin permeability could increase which correlated with repression of CA9 and AQP1 genes. Beside activation of AHR-NRF2 pathway in CS-exposed HSE, our results suggested that mitochondrial functions were strongly impacted and oxidized lipids failed to be eliminated promoting skin barrier alteration.A mitophagy activity was suggested through the confirmation of PINK1 accumulation in the epidermis by immunostaining.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.