Key message QTL controlling vigour and related traits were identified in a chickpea RIL population and validated in diverse sets of germplasm. Robust KASP markers were developed for marker-assisted selection. Abstract To understand the genetic constitution of vigour in chickpea (Cicer arietinum L.), genomic data from a bi-parental population and multiple diversity panels were used to identify QTL, sequence-level haplotypes and genetic markers associated with vigour-related traits in Australian environments. Using 182 Recombinant Inbred Lines (RILs) derived from a cross between two desi varieties, Rupali and Genesis836, vigour QTL independent of flowering time were identified on chromosomes (Ca) 1, 3 and 4 with genotypic variance explained (GVE) ranging from 7.1 to 28.8%. Haplotype analysis, association analysis and graphical genotyping of whole-genome re-sequencing data of two diversity panels consisting of Australian and Indian genotypes and an ICRISAT Chickpea Reference Set revealed a deletion in the FTa1-FTa2-FTc gene cluster of Ca3 significantly associated with vigour and flowering time. Across the RIL population and diversity panels, the impact of the deletion was consistent for vigour but not flowering time. Vigour-related QTL on Ca4 co-located with a QTL for seed size in Rupali/Genesis836 (GVE = 61.3%). Using SNPs from this region, we developed and validated gene-based KASP markers across different panels. Two markers were developed for a gene on Ca1, myo -inositol monophosphatase (CaIMP), previously proposed to control seed size, seed germination and seedling growth in chickpea. While associated with vigour in the diversity panels, neither the markers nor broader haplotype linked to CaIMP was polymorphic in Rupali/ Genesis836. Importantly, vigour appears to be controlled by different sets of QTL across time and with components which are independent from phenology.
Triticale is a hardy, high yielding cereal crop with a reputation for poor gluten strength. The secalogluten formation capacity was investigated in 17 modern triticale cultivars by defining their HMW glutenin and 75K γ-secalin alleles and then assessing SDS-sedimentation height and mixograph parameters in a subset of cultivars. The allelic diversity was poor with only 13 alleles identified at four loci; nevertheless, sufficient variability existed to allow secalogluten improvement through crossbreeding and selection. SDS-sedimentation height of triticale (35.5 mm) and mixing time (2.7 min) was equivalent to soft wheat but significantly less than hard wheat. However, flour protein content was 16% less in triticale compared to wheat, despite similar grain protein contents, suggesting triticale stores a lower proportion of grain protein in the endosperm. The confounding factor of protein content must be considered as part of an equitable analysis of gluten quality in cultivar breeding, in the interpretation of previous triticale research, and when comparing triticale to wheat. Improved glutenin properties will expand the utility of triticale in human food products and, thus, increase potential profitability.
Australian native grains have an extended history of human consumption; however, their place in diets was disrupted when colonisation triggered a shift away from traditional lifestyles for Aboriginal people. Despite being time- and energy-intensive to harvest, the inclusion of native grains in diets is thought to have offered considerable adaptive advantage by assisting human occupation of arid and semiarid zones. Ethnographic evidence has shown that Aboriginal people developed specialised tools and techniques to transform grain into more edible forms. Research on native grain consumption has mainly been conducted from an ethnographic perspective, with the objective of furthering understanding of Aboriginal societies, instead of the agricultural or food science significance of these plant species. Consequently, a research gap in all aspects of Australian native grains in modern food-production systems from the paddock to plate has emerged, and is being filled by research projects in multiple parts of the country due to surging interest in this food system. There is a critical need for Aboriginal communities, land managers, food industry professionals and research institutions to come together and set a research agenda that ensures cultural protocols are respected, research investment is not unnecessarily duplicated, and the results are targeted to places where they will be of most benefit to people and the planet.
Triticale (Triticosecale  Wittmack) is a high yielding cereal crop with the potential to increase grain production for human food in the coming decades. The quality of triticale flour is usually intermediate between its progenitor species; however, there are considerable differences in quality and response to agronomic conditions among cultivars. The aim of this research was to quantify existing genetic variation to provide preliminary data for classification of triticale cultivars for a milling market. Eleven triticale cultivars from three growing environments were compared with five wheat cultivars bred for various end users. Average protein content, milling yield, thousand-kernel weight, test weight, hardness, colour and ash content supported previous reports. One cultivar was identified with grain hardness and milling yield equivalent to durum wheat, suggesting a null allele at the rye softness protein locus. Ash content was higher than wheat, particularly in the flour despite lower extraction rates, suggesting triticale naturally stores more minerals in its endosperm and the benchmark for milling-grade triticale should be higher than the standard for wheat. Cookie dough weight of triticale was significantly lower per unit volume, indicating current baking processes must be altered to deal with the generally poor water retention of triticale. Significant differences were observed among cultivars for cookie quality and some produced cookies equivalent to soft wheat. There is a clear need to classify cultivars into suitability for various end users to facilitate production and marketing of quality triticale.
The aim of this study was to describe the morphology, anatomy and function of underground structures associated with colonies of Solanum centrale J.M.Black (Australian bush tomato), a perennial sub-shrub found in arid areas of Australia and an important traditional staple food for Aboriginal people. It is known that this species forms clonal communities, but there is little understanding of the mechanisms of formation in either natural or cultivated situations. The underground connections within seven clonal communities from Central and South Australia were documented and samples of secondary roots, thick lateral roots and stems were examined under both laboratory and glasshouse conditions. Clonal communities were observed at all sites with individual ramets arising from lateral roots (root-suckers) that ranged from 2–10 mm in diameter growing in a network 5–15 cm below the soil surface. Lateral roots have dicotyledonous root anatomy and rapidly resprout to form new clonal ramets. They also have the capacity to accumulate starch in parenchyma cells. The morphology and root-suckering ability resemble those of weedy Solanum spp. from other parts of the world, as well as species from a variety of genera adapted to arid climates. Methods to capitalise on the ability of lateral roots to form clonal ramets in cultivated situations, particularly given the difficulties in establishing crops from seed, are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.