Human brain mapping is an experimental discipline that establishes structure-function correspondences in the brain through the combined application of experimental psychology, human neuroscience, and noninvasive neuroimaging. A deep and diverse literature on the functional organization of the human brain is emerging, which has pushed neuroimaging squarely into the scientific mainstream. Because of this rapid growth, there is a great need to effectively collect and synthesize the body of literature in this field. The BrainMap database was created in response to this need as an electronic environment for modeling the human brain through quantitative meta-analysis of the brain mapping literature. BrainMap was originally conceived in 1987 and has received continuous funding from 1988 to 2004. During this time, BrainMap has consistently evolved to meet the challenges of an ever-changing field and continues to strive toward higher levels of applicability. In this article, we discuss BrainMap's structure and utility, and relate its progress and development as a neuroinformatics tool.
BackgroundNeuroimaging researchers have developed rigorous community data and metadata standards that encourage meta-analysis as a method for establishing robust and meaningful convergence of knowledge of human brain structure and function. Capitalizing on these standards, the BrainMap project offers databases, software applications, and other associated tools for supporting and promoting quantitative coordinate-based meta-analysis of the structural and functional neuroimaging literature.FindingsIn this report, we describe recent technical updates to the project and provide an educational description for performing meta-analyses in the BrainMap environment.ConclusionsThe BrainMap project will continue to evolve in response to the meta-analytic needs of biomedical researchers in the structural and functional neuroimaging communities. Future work on the BrainMap project regarding software and hardware advances are also discussed.
Structural equation modeling (SEM) was applied to positron emission tomographic (PET) images acquired during transcranial magnetic stimulation (TMS) of the primary motor cortex (M1(hand)). TMS was applied across a range of intensities, and responses both at the stimulation site and remotely connected brain regions covaried with stimulus intensity. Regions of interest (ROIs) were identified through an activation likelihood estimation (ALE) meta-analysis of TMS studies. That these ROIs represented the network engaged by motor planning and execution was confirmed by an ALE meta-analysis of finger movement studies. Rather than postulate connections in the form of an a priori model (confirmatory approach), effective connectivity models were developed using a model-generating strategy based on improving tentatively specified models. This strategy exploited the experimentally imposed causal relations: (1) that response variations were caused by stimulation variations, (2) that stimulation was unidirectionally applied to the M1(hand) region, and (3) that remote effects must be caused, either directly or indirectly, by the M1(hand) excitation. The path model thus derived exhibited an exceptional level of goodness (chi(2)=22.150, df=38, P=0.981, TLI=1.0). The regions and connections derived were in good agreement with the known anatomy of the human and primate motor system. The model-generating SEM strategy thus proved highly effective and successfully identified a complex set of causal relationships of motor connectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.