To obtain insight into the morphological and molecular correlates of motoneuron degeneration in amyotrophic lateral sclerosis (ALS) mice that express G93A mutant superoxide dismutase (SOD)1 (G93A mice), we have mapped and characterized 'sick' motoneurons labelled by the 'stress transcription factors' ATF3 and phospho-c-Jun. Immunocytochemistry and in situ hybridization showed that a subset of motoneurons express ATF3 from a relatively early phase of disease before the onset of active caspase 3 expression and motoneuron loss. The highest number of ATF3-expressing motoneurons occurred at symptom onset. The onset of ATF3 expression correlated with the appearance of ubiquitinated neurites. Confocal double-labelling immunofluorescence showed that all ATF3-positive motoneurons were immunoreactive for phosphorylated c-Jun. Furthermore, the majority of ATF3 and phospho-c-Jun-positive motoneurons were also immunoreactive for CHOP (GADD153) and showed Golgi fragmentation. A subset of ATF3 and phosphorylated c-Jun-immunoreactive motoneurons showed an abnormal appearance characterized by a number of distinctive features, including an eccentric flattened nucleus, perikaryal accumulation of ubiquitin immunoreactivity, juxta-nuclear accumulation of the Golgi apparatus and the endoplasmic reticulum, and intense Hsp70 immunoreactivity. These abnormal cells were not immunoreactive for active caspase 3. We conclude that motoneurons in ALS-SOD1 mice prior to their death and disappearance experience a prolonged sick phase, characterized by the gradual accumulation of ubiquitinated material first in the neurites and subsequently the cell body.
We have investigated the expression of Hsp25, a heat shock protein constitutively expressed in motoneurons, in amyotrophic lateral sclerosis (ALS) mice that express G93A mutant SOD1 (G93A mice). Immunocytochemistry and Western blotting showed that a decrease of Hsp25 protein expression occurred in motoneurons of G93A mice prior to the onset of motoneuron death and muscle weakness. This decrease in Hsp25 expression also preceded the appearance of SOD1 aggregates as identified by cellulose acetate filtration and Western blot analysis. In contrast to Hsp25 protein levels, Hsp25 mRNA as determined by in situ hybridization and RT-PCR, remained unchanged. This suggests that the decrease in Hsp25 protein levels occurs post-transcriptionally. In view of the cytoprotective properties of Hsp25 and the temporal relationship between decreased Hsp25 expression and the onset of motoneuron death, it is feasible that reduced Hsp25 concentration contributes to the degeneration of motoneurons in G93A mice. These data are consistent with the idea that mutant SOD1 may reduce the availability of the protein quality control machinery in motoneurons.
Evidence is increasing that mitochondrial dysfunction is involved in amyotrophic lateral sclerosis, a neurodegenerative disease characterized by selective motoneuron death. To study the role of mitochondrial dysfunction in the pathways leading to motoneuron death, we developed an in vitro model of chronic motoneuron toxicity, based on malonate-induced inhibition of complex II in the mitochondrial electron transport chain. Treatment with malonate resulted in a dose-dependent decrease in cellular ATP levels. We observed that motoneurons were significantly more vulnerable to mitochondrial inhibition than control neurons in the dorsal horn. We could reproduce this dose-dependent phenomenon with the complex IV inhibitor sodium azide. The free radical scavenger alpha-phenyl-N-tert-butylnitrone, the AMPA/kainate receptor blocker 6-cyano-7-nitroquinoxaline-2,3-dione, and riluzole, a drug that is currently used for the treatment of amyotrophic lateral sclerosis, were protective against malonate-induced motoneuron death. Furthermore, the caspase inhibitors N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone and z-Asp-Glu-Val-Asp-fluoromethyl ketone were both protective against malonate toxicity. Our model shows that chronic mitochondrial inhibition leads to selective motoneuron death, which is most likely apoptotic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.