Background The aim of this study was to analyze the consumption of sports supplements (SS) in competitive level fencers and compare differences based on sex and competitive level (international and national). Methods A total of 49 fencers (18 men and 31 women) of national (n = 16) and international (n = 33) level completed a questionnaire with questions about SS consumption and the possible repercussions on health and / or sports performance. The results were analyzed based on the different categorizations established by the Australian Institute of Sport (AIS), as well as by sex and level of competence to which the participants belonged to. Results 46.9% of fencers have consumed SS with the main motivation being performance improvement (34.2%). Medical doctors were the individuals who were more likely to advise men to consume SS (50.0% vs 5.6%; OR = 3.29 [1.50–7.20]). Friends were most likely to advise women (38.9% vs 8.3%; OR = 1.75 [1.05–2.93]). The most consumed SS were sport drinks (44.9%), vitamin C (43.4%), sport bars (38.8%), and caffeine (28.6%). In regards to the SS categories, it was observed differences in the interaction level·sex in medical supplements (p = 0.017). In addition, there was a higher prevalence of whey protein consumption in women (25.8% vs 0%; p = 0.020) and iron consumption in men (33% vs 6.5%; p = 0.039). Conclusions The prevalence of SS use in fencers is within the values previously reported in athletes of the same competitive level. There were no differences by sex and competitive level in the total consumption of SS, nor in each of the groups of level of evidence, being sport drinks, bars and caffeine the most consumed SS.
The aim of this study was to determine the influence of 2 methods of stretch training (passive and proprioceptive neuromuscular facilitation [PNF]) on range of motion (ROM) in older people between the age of 60 and 70 years over a period of 13 weeks. Fifty-four participants (39 women and 15 men) were divided into 3 groups: passive (n = 17; 66.5 ± 6.5 years), PNF (n = 17; age, 64.7 ± 4.0 years old), and control (n = 17; age, 66.4 ± 4.5 years). The subjects trained 2 times per week on nonconsecutive days for 13 weeks. Each training session included 2 flexibility exercises focused on the shoulder and hip joints. The PNF group performed 6 seconds of passive stretching, 3 seconds of muscular contractions, and 2 seconds of relaxation. The passive group performed 10 seconds of stretching and 5 seconds of relaxation. This sequence was repeated 3 times by each group. The control group did not perform any stretching. In the PNF group, there was an increase in hip ROM (p < 0.001) between pretest and posttest in the passive group and an improvement (p < 0.001) was observed between pretest and posttest, whereas in the control group, there was a significant decrease (p < 0.01) in hip ROM between pretest and posttest. In shoulder ROM, there was an increase (p < 0.001) between pretest and posttest in the passive group and an improvement (p < 0.001) was observed between pretest and posttest in the PNF group. There were no changes in shoulder ROM between pretest and posttest in the control group. The analysis of variance showed significant differences in hip and shoulder ROM between passive and control groups and PNF and control groups, but no significant differences were found between passive and PNF. The main finding was that the ability of physically active older people to increase ROM in response to stretching techniques is similar for both passive and PNF techniques.
Caffeine mouth rinsing (CMR) has been shown to enhance exercise performance. However, no studies have analyzed the effects of different dosages of CMR on muscular performance. Therefore, the purpose of this study was to examine the effects of different dosages of CMR on strength (bench press 1 repetition maximum (1-RM)) and muscular endurance (60% of 1-RM repetitions to failure) in resistance-trained males. Fourteen resistance-trained males (age: 23 ± 2 years, height: 179 ± 3 cm, body mass: 83 ± 4 kg, BMI: 17 ± 2 kg/m2) completed four conditions in random order. The four conditions consisted of a mouth rinse with 25 mL solutions containing either 1% (250 mg) of CMR (low dose of CMR: LCMR), 2% (500 mg) of CMR (moderate dose of CMR: MCMR), 3% (750 mg) of CMR (high dose of CMR: HCMR) and sweetened water (placebo: PLA) for 5 s prior to a bench press strength and muscular endurance test. Maximal strength, muscular endurance, heart rate (HR) and ratings of perceived exertion (RPE) were recorded for each condition. There were no significant differences in strength (p = 0.30) and HR (p = 0.83) between conditions. HCMR significantly increased muscular endurance performance (p = 0.01) and decreased RPE values (p = 0.01). In conclusion, CMR did not affect bench press 1-RM strength performance, but muscular endurance responses to CMR seems to be dose-dependent.
The aim of this study was to examine the acute effects of different levels of hypoxia on maximal strength, muscular endurance, and cognitive function in males and females. In total, 13 males (mean ± SD: age, 23.6 ± 2.8 years; height, 176.6 ± 3.9 cm; body mass, 76.6 ± 2.1 kg) and 13 females (mean ± SD: age, 22.8 ± 1.4 years; height, 166.4 ± 1.9 cm; body mass, 61.6 ± 3.4 kg) volunteered for a randomized, double-blind, crossover study. Participants completed a one repetition strength and muscular endurance test (60% of one repetition maximum to failure) for squat and bench press following four conditions; (i) normoxia (900 m altitude; FiO2: 21%); (ii) low dose hypoxia (2000 m altitude; FiO2: 16%); (iii) moderate dose hypoxia (3000 m altitude; FiO2: 14%); and (iv) high dose hypoxia (4000 m altitude; FiO2: 12%). Heart rate, blood lactate, rating of perceived exertion, and cognitive function was also determined during each condition. The one repetition maximum squat (p = 0.33) and bench press (p = 0.68) did not differ between conditions or sexes. Furthermore, squat endurance did not differ between conditions (p = 0.34). There was a significant decrease in bench press endurance following moderate (p = 0.02; p = 0.04) and high (p = 0.01; p = 0.01) doses of hypoxia in both males and females compared to normoxia and low dose hypoxia, respectively. Cognitive function, ratings of perceived exertion, and lactate were also significantly different in high and moderate dose hypoxia conditions compared to normoxia (p < 0.05). Heart rate was not different between the conditions (p = 0.30). In conclusion, high and moderate doses of acute normobaric hypoxia decrease upper body muscular endurance and cognitive performance regardless of sex; however, lower body muscular endurance and maximal strength are not altered.
The aim of the present study was to analyze the effect of conservative non-invasive treatments based on eccentric training, stretching and extracorporeal shock wave therapy (ESWT) supplemented with β-Hydroxy β-methylbutyric (HMB) or placebo (PLAC) on body composition, pain and muscular function (jump ability, muscular power and muscular strength) in athletes with patellar tendinopathy (PT). In a double-blind randomized trial, 8 athletes (4 males and 4 females) performed a physical rehabilitation for 4 weeks. They were randomly divided into two experimental groups (two males and two females in each one) that ingested HMB (HMBG) or PLAC (PLACG). In pre- and post-intervention were assessed body composition, pain, countermovement jump (CMJ), back-squat (BS) for analyzing peak power (W) (PPPP), load (kg) associated to PPPP (PPKG) and mean velocity (m/s) (PPMV) in addition to a 5-RM leg extension tests. An interaction intervention·supplementation (p = 0.049; Ƞ2p = 0.774) was observed in the height reached in the CMJ as an intervention effect in PPPP detected for the HMBG (p = 0.049). In addition, an enhancement in PPKG (p = 0.028; Ƞ2p = 0.842) was detected in the intervention, but not in PPMV, as an increase in the intervention in the 5-RM test (p = 0.001; Ƞ2p = 0.981) was observed. No changes were noted on body composition or pain (p > 0.05). The combination of eccentric training with stretching and ESWT increased concentric muscular power and strength after 4 weeks without changes in body lean mass or pain. In addition, HMB supplementation could enhance the power muscular performance in athletes with PT, optimizing the intervention adaptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.