Alzheimer’s disease (AD) affects not only the central nervous system, but also peripheral blood cells including neutrophils and platelets, which actively participate in pathogenesis of AD through a vicious cycle between platelets aggregation and production of excessive amyloid beta (Aβ). Platelets adhesion on amyloid plaques also increases the risk of cerebral microcirculation disorders. Moreover, activated platelets release soluble adhesion molecules that cause migration, adhesion/activation of neutrophils and formation of neutrophil extracellular traps (NETs), which may damage blood brain barrier and destroy brain parenchyma. The present study examined the effects of intermittent hypoxic-hyperoxic training (IHHT) on elderly patients with mild cognitive impairment (MCI), a precursor of AD. Twenty-one participants (age 51–74 years) were divided into three groups: Healthy Control (n = 7), MCI+Sham (n = 6), and MCI+IHHT (n = 8). IHHT was carried out five times per week for three weeks (total 15 sessions). Each IHHT session consisted of four cycles of 5-min hypoxia (12% FIO2) and 3-min hyperoxia (33% FIO2). Cognitive parameters, Aβ and amyloid precursor protein (APP) expression, microRNA 29, and long non-coding RNA in isolated platelets as well as NETs in peripheral blood were investigated. We found an initial decline in cognitive function indices in both MCI+Sham and MCI+IHHT groups and significant correlations between cognitive test scores and the levels of circulating biomarkers of AD. Whereas sham training led to no change in these parameters, IHHT resulted in the improvement in cognitive test scores, along with significant increase in APP ratio and decrease in Aβ expression and NETs formation one day after the end of three-week IHHT. Such effects on Aβ expression and NETs formation remained more pronounced one month after IHHT. In conclusion, our results from this pilot study suggested a potential utility of IHHT as a new non-pharmacological therapy to improve cognitive function in pre-AD patients and slow down the development of AD.
CYP2E1 can play a crucial role in stress-induced pathological processes in the liver in diabetes, and the inhibition of the enzyme by quercetin during the development of diabetes mainly prevents the oxidative damage in liver.
The purpose of this study is to investigate myocardial nitric oxide synthase (NOS) activity and connexin-43 (Cx43) expression in young and old spontaneously hypertensive rats (SHR), adult hereditary hypertriglyceridemic (HTG) rats, and age-matched healthy rats without and with omega-3 PUFA supplementation for 2 months. Results showed that comparing to healthy rats the myocardial NOS activity was significantly increased in young SHR (8.2 ± 1.16 vs. 1.37 ± 0.67 pmol/min/mg) as well as old SHR (3.21 ± 0.75 vs. 2.22 ± 0.56 pmol/min/mg) and to much lesser extent in HTG rats, i.e., 1.87 ± 0.42 vs. 1.34 ± 0.1 pmol/min/mg. In parallel, there was a significant decline of total and phosphorylated forms of Cx43 in both groups of SHR while not in HTG rat hearts in which phosphorylated form of Cx43 was increased. Elevated NOS activity was suppressed (P < 0.05) in young and old SHR supplemented with omega-3 PUFA and it was associated with up-regulation of Cx43. In contrast to SHR, elevation of NOS activity in HTG rat hearts was not affected by treatment with omega-3 PUFA. However, increase of phosphorylated form of Cx43 was suppressed. In conclusion, there is an inverse relationship between myocardial NOS activity and Cx43 expression in SHR while not HTG rat hearts and omega-3 PUFA modulate both NOS activity and Cx43 expression. Whether over-expression of inducible NOS might account for down-regulation of myocardial Cx43 and whether its up-regulation is associated with an increase of endothelial NOS should be explored in further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.