Background: Acid α-glucosidase, an enzyme replacement therapy for Pompe disease, is poorly targeted to lysosomes when relying on phosphomannose residues.Results: Fusing IGF-II to acid α-glucosidase resulted in more efficient uptake and glycogen clearance from muscle of Pompe mice.Conclusion: Enhanced binding to the cation-independent mannose 6-phosphate receptor (CI-MPR) enabled improved glycogen clearance in Pompe mice.Significance: BMN 701 is now being tested for Pompe disease in human clinical studies.
Lifelong noninvasive rejection monitoring in heart transplant patients is a critical clinical need historically poorly met in adults and unavailable for children and infants. Cell-free DNA (cfDNA) donor-specific fraction (DF), a direct marker of selective donor organ injury, is a promising analytical target. Methodological differences in sample processing and DF determination profoundly affect quality and sensitivity of cfDNA analyses, requiring specialized optimization for low cfDNA levels typical of transplant patients. Using next-generation sequencing, we previously correlated elevated DF with acute cellular and antibody-mediated rejection (ACR and AMR) in pediatric and adult heart transplant patients. However, next-generation sequencing is limited by cost, TAT, and sensitivity, leading us to clinically validate a rapid, highly sensitive, quantitative genotyping test, myTAI HEART ® , addressing these limitations. To assure pre-analytical quality and consider interrelated cfDNA measures, plasma preparation was optimized and total cfDNA (TCF) concentration, DNA fragmentation, and DF quantification were validated in parallel for integration into myTAI HEART reporting. Analytical validations employed individual and reconstructed mixtures of human blood-derived genomic DNA (gDNA), cfDNA, and gDNA sheared to apoptotic length. Precision, linearity, and limits of blank/detection/quantification were established for TCF concentration, DNA fragmentation ratio, and DF determinations. For DF, multiplexed high-fidelity amplification followed by quantitative genotyping of 94 SNP targets was applied to 1168 samples to evaluate donor options in staged simulations, demonstrating DF call equivalency with/without donor genotype. Clinical validation studies using 158 matched endomyocardial
Powassan/Deer Tick Virus (POWV/DTV) is an emerging cause of arboviral neuroinvasive disease in the upper Midwest. These studies describe the prevalence and geographic distribution of Wisconsin ticks carrying POWV/DTV as well as the high frequency of Ixodes scapularis ticks coinfected with both POWV/DTV and Borrelia burgdorferi, the causative agent of Lyme disease. These findings suggest that concurrent transmission of POWV/DTV and B. Burgdorferi from coinfected ticks is likely to occur in humans.
Powassan virus (POWV) lineage II is an emerging tickborne flavivirus with an unknown seroprevalence in humans. In a Lyme disease–endemic area, we examined the seroreactivity to POWV in 2 patient cohorts and described the clinical features of the POWV-seroreactive patients. POWV disease might be less neuroinvasive than previously thought.
Approximately 100 cases of POWV disease were reported in the United States over the past 10 years. Most cases have occurred in the Northeast (52) and Great Lakes (45) regions (https://www.cdc.gov/powassan/statistics.html). The prevalence of POWV in ticks and mammals is increasing, and POWV poses an increasing threat in a greater geographical range. In areas of the Northeast and Midwest where Lyme disease is endemic, POWV testing is recommended for patients with a recent tick bite, patients with Lyme disease who have been treated with antibiotics, or patients with a tick exposure who have tested negative for Lyme disease or other tick-borne illnesses and have persistent symptoms consistent with posttreatment Lyme disease. Testing could also benefit patients with tick exposure and unexplained neurologic symptoms and chronic fatigue syndrome (CFS) patients with known tick exposure. Until now, diagnostic testing for Powassan virus has not been commercially available and has been limited to patients presenting with severe, neurologic complications. The lack of routine testing for Powassan virus in patients with suspected tick-borne disease means that little information is available regarding the overall prevalence of the virus and the full spectrum of clinical symptoms associated with infection. As Ixodes scapularis is the tick vector for Powassan virus and multiple other tick-borne pathogens, including the Lyme disease bacterium, Borrelia burgdorferi, the clinical presentations and long-term outcomes of Powassan virus infection and concurrent infection with other tick-borne disease pathogens remain unknown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.