It is well known that the action of glucose on pancreatic islets results in increased plasma insulin levels. Nevertheless, high blood glucose levels are not solely responsible for increased insulin secretion (for review, see Ref. 1). For example, in 1964 McIntyre et al. (2) demonstrated that intravenous injection of glucose resulted in a smaller insulin release than that resulting from intrajejunal glucose injection, even though the latter produced lower blood glucose levels compared with the former. Hence, glucose-dependent insulin secretion requires a nutrientdependent component, which was believed to be an endocrine transmitter termed an "incretin" (3). It has since been demonstrated that two hormones, glucagon-like peptide-1 and glucosedependent insulinotropic polypeptide, are responsible for the incretin effect (1).The predominant active form of GLP-1 is actually glucagonlike peptide-1(7-36)amide (termed GLP-1 1 throughout this paper), a 30-residue peptide hormone derived from the post-translational modification of proglucagon in intestinal L cells (1). GLP-1 not only increases glucose-dependent insulin secretion (4 -6), but it also decreases glucose-dependent glucagon secretion (7, 8) and decelerates gastric emptying (9). In addition, GLP-1 has been shown to reduce appetite in rats (10) and to stimulate proinsulin gene transcription and biosynthesis in pancreatic -cells (11, 12). The physiological roles of GLP-1 in maintaining blood sugar levels, via a glucose-dependent mechanism, have heightened interest in the GLP-1 receptor (GLP-1R) as a target for glucose-dependent therapeutic agents designed to treat hyperglycemia resulting from diabetes (13,14). Unfortunately, the half-life of GLP-1 itself after subcutaneous injection is very short because of dipeptidyl peptidase IV cleavage of the first 2 N-terminal residues (15), and so future research requires the design of physiologically stable GLP-1R agonists.The venom of the Gila monster Heloderma suspectum contains a mixture of compounds that includes several peptides related in sequence to GLP-1. Two of these, exendin-3 and exendin-4, are 39-amino acid peptides that share ϳ50% sequence identity to GLP-1 itself and are indeed potent GLP-1R agonists (Fig. 1) (16, 17). Interestingly, although GLP-1 affinity is highly sensitive to N-terminal cleavage, exendin-4 can be truncated by up to 8 residues at its N terminus without significant loss of affinity, suggesting that relative to GLP-1, the central and/or C-terminal residues form additional stabilizing contacts with the receptor (15, 18). Nevertheless, the first two amino acids are also essential for the efficacy of exendin peptides because, once removed, the truncated exendin peptides function as antagonists or inverse agonists (16 -19).
Rabphilin is a synaptic vesicle-associated protein proposed to play a role in regulating neurotransmitter release. Here we report the isolation and identi¢cation of a novel protein complex containing rabphilin, annexin A4 and synaptotagmin 1. We show that the rabphilin C2B domain interacts directly with the N-terminus of annexin A4 and mediates the co-complexing of these two proteins in PC12 cells. Analyzing the cellular localisation of these co-complexing proteins we ¢nd that annexin A4 is located on synaptic membranes and co-localises with rabphilin at the plasma membrane in PC12 cells. Given that rabphilin and synaptotagmin are synaptic vesicle proteins involved in neurotransmitter release, the identi¢cation of this complex suggests that annexin A4 may play a role in synaptic exocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.