Clinical studies suggest that agonists at peroxisome proliferator-activated receptor gamma (PPARg) may exert beneficial effects in patients with mild-to-moderate Alzheimer's disease (AD), but the mechanism for the potential therapeutic interest of this class of drugs has not yet been elucidated. Here, in mice overexpressing mutant human amyloid precursor protein, we found that chronic treatment with rosiglitazone, a high-affinity agonist at PPARg, facilitated b-amyloid peptide (Ab) clearance. Rosiglitazone not only reduced Ab burden in the brain but, importantly, almost completely removed the abundant amyloid plaques observed in the hippocampus and entorhinal cortex of 13-month-old transgenic mice. In the hippocampus, neuropil threads containing phosphorylated tau, probably corresponding to dystrophic neurites, were also decreased by the drug. Rosiglitazone switched on the activated microglial phenotype, promoting its phagocytic ability, reducing the expression of proinflammatory markers and inducing factors for alternative differentiation. The decreased amyloid pathology may account for the reduction of p-tau-containing neuropil threads and for the rescue of impaired recognition and spatial memory in the transgenic mice. This study provides further insights into the mechanisms for the beneficial effect of rosiglitazone in AD patients.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a major cause of familial Parkinsonism, and the G2019S mutation of LRRK2 is one of the most prevalent mutations. The deregulation of autophagic processes in nerve cells is thought to be a possible cause of Parkinson's disease (PD). In this study, we observed that G2019S mutant fibroblasts exhibited higher autophagic activity levels than control fibroblasts. Elevated levels of autophagic activity can trigger cell death, and in our study, G2019S mutant cells exhibited increased apoptosis hallmarks compared to control cells. LRRK2 is able to induce the phosphorylation of MAPK/ERK kinases (MEK). The use of 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (U0126), a highly selective inhibitor of MEK1/2, reduced the enhanced autophagy and sensibility observed in G2019S LRRK2 mutation cells. These data suggest that the G2019S mutation induces autophagy via MEK/ERK pathway and that the inhibition of this exacerbated autophagy reduces the sensitivity observed in G2019S mutant cells.
Gonadotropin-releasing hormone (GnRH) receptor agonists are extensively used in the treatment of sex hormone-dependent cancers via the desensitization of pituitary gonadotropes and consequent decrease in steroid sex hormone secretion. However, evidence now points to a direct inhibitory effect of GnRH analogs on cancer cells. These effects appear to be mediated via the G␣ i -type G protein, in contrast to the predominant G␣ q coupling in gonadotropes. Unlike G␣ q coupling, G␣ i coupling of the GnRH receptor can be activated by both agonists and antagonists. This unusual pharmacology suggested that the receptor involved in the cancer cells may not be the classical gonadotrope type I GnRH receptor. However, we have previously shown that a functional type II GnRH receptor is not present in man. In the present study, we show that GnRH agonists and selective GnRH antagonists exert potent antiproliferative effects on JEG-3 choriocarcinoma, benign prostate hyperplasia (BPH-1), and HEK293 cells stably expressing the type I GnRH receptor. This antiproliferative action occurs through a G␣ i -mediated activation of stress-activated protein kinase pathways, resulting in caspase activation and transmembrane transfer of phosphatidlyserine to the outer membrane envelope. Structurally related antagonistic GnRH analogs displayed divergent antiproliferative efficacies but demonstrated equal efficacies in inhibiting GnRH-induced G␣ q -based signaling. Therefore the ability of GnRH receptor antagonists to exert an antiproliferative effect on reproductive tumors may be dependent on ligand-selective activation of the G␣ i -coupled form of the type I GnRH receptor.
It is well known that the action of glucose on pancreatic islets results in increased plasma insulin levels. Nevertheless, high blood glucose levels are not solely responsible for increased insulin secretion (for review, see Ref. 1). For example, in 1964 McIntyre et al. (2) demonstrated that intravenous injection of glucose resulted in a smaller insulin release than that resulting from intrajejunal glucose injection, even though the latter produced lower blood glucose levels compared with the former. Hence, glucose-dependent insulin secretion requires a nutrientdependent component, which was believed to be an endocrine transmitter termed an "incretin" (3). It has since been demonstrated that two hormones, glucagon-like peptide-1 and glucosedependent insulinotropic polypeptide, are responsible for the incretin effect (1).The predominant active form of GLP-1 is actually glucagonlike peptide-1(7-36)amide (termed GLP-1 1 throughout this paper), a 30-residue peptide hormone derived from the post-translational modification of proglucagon in intestinal L cells (1). GLP-1 not only increases glucose-dependent insulin secretion (4 -6), but it also decreases glucose-dependent glucagon secretion (7, 8) and decelerates gastric emptying (9). In addition, GLP-1 has been shown to reduce appetite in rats (10) and to stimulate proinsulin gene transcription and biosynthesis in pancreatic -cells (11, 12). The physiological roles of GLP-1 in maintaining blood sugar levels, via a glucose-dependent mechanism, have heightened interest in the GLP-1 receptor (GLP-1R) as a target for glucose-dependent therapeutic agents designed to treat hyperglycemia resulting from diabetes (13,14). Unfortunately, the half-life of GLP-1 itself after subcutaneous injection is very short because of dipeptidyl peptidase IV cleavage of the first 2 N-terminal residues (15), and so future research requires the design of physiologically stable GLP-1R agonists.The venom of the Gila monster Heloderma suspectum contains a mixture of compounds that includes several peptides related in sequence to GLP-1. Two of these, exendin-3 and exendin-4, are 39-amino acid peptides that share ϳ50% sequence identity to GLP-1 itself and are indeed potent GLP-1R agonists (Fig. 1) (16, 17). Interestingly, although GLP-1 affinity is highly sensitive to N-terminal cleavage, exendin-4 can be truncated by up to 8 residues at its N terminus without significant loss of affinity, suggesting that relative to GLP-1, the central and/or C-terminal residues form additional stabilizing contacts with the receptor (15, 18). Nevertheless, the first two amino acids are also essential for the efficacy of exendin peptides because, once removed, the truncated exendin peptides function as antagonists or inverse agonists (16 -19).
Transgenic mice expressing mutant human amyloid precursor protein (APP) develop an age-dependent amyloid pathology and memory deficits, but no overt neuronal loss. Here, in mice overexpressing wild-type human APP (hAPP wt ) we found an early memory impairment, particularly in the water maze and to a lesser extent in the object recognition task, but β-amyloid peptide (Aβ 42 ) was barely detectable in the hippocampus. In these mice, hAPP processing was basically non-amyloidogenic, with high levels of APP carboxy-terminal fragments, C83 and APP intracellular domain. A tau pathology with an early increase in the levels of phosphorylated tau in the hippocampus, a likely consequence of enhanced ERK1/2 activation, was also observed. Furthermore, these mice presented a loss of synapse-associated proteins: PSD95, AMPA and NMDA receptor subunits and phosphorylated CaMKII. Importantly, signs of neurodegeneration were found in the hippocampal CA1 subfield and in the entorhinal cortex that were associated to a marked loss of MAP2 immunoreactivity. Conversely, in mice expressing mutant hAPP, high levels of Aβ 42 were found in the hippocampus, but no signs of neurodegeneration were apparent. The results support the notion of Aβ-independent pathogenic pathways in Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.