Most of the school buildings in Italy are high energy-demanding buildings with no ad-hoc ventilation systems (i.e., naturally-ventilated buildings). Therefore, reducing the heat losses of schools represent the main aspect to be dealt with. Nonetheless, the indoor air quality of the building should be simultaneously considered. Indeed, to date, energy consumptions and air quality are considered as incompatible aspects especially in naturally-ventilated buildings. The aim of the present paper is to evaluate the effect of different ventilation and airing strategies on both indoor air quality and energy consumptions in high energy-demanding naturally-ventilated classrooms. To this purpose, an Italian test-classroom, characterized in terms of air permeability and thermophysical parameters of the envelope, was investigated by means of experimental analyses and simulations through CO2 mass balance equation during the heating season. The air quality was assessed in terms of indoor CO2 concentrations whereas the energy consumptions were evaluated through the asset rating approach. Results clearly report that not adequate indoor CO2 concentrations are measured in the classroom for free-running ventilation scenarios even in low densely populated conditions (2.2 m2 person−1), whereas scheduled airing procedures can reduce the indoor CO2 levels at the cost of higher energy need for ventilation. In particular, when airing periods leading to the air exchange rate required by standards are adopted, the CO2 concentration can decrease to values lower than 1000 ppm, but the ventilation losses increase up to 36% of the overall energy need for space heating of the classroom. On the contrary, when the same air exchange rate is applied through mechanical ventilation systems equipped with heat recovery units, the ventilation energy loss contribution decreases to 5% and the overall energy saving results higher than 30%. Such energy-saving was found even higher for occupancy scenarios characterized by more densely populated conditions of the classroom typically occurring in Italian classrooms.
Characterization of indoor air quality in school classrooms is crucial to children's health and performance. The present study was undertaken to characterize the indoor air quality in six naturally ventilated classrooms of three schools in Cassino (Italy). Indoor particle number, mass, black carbon, CO2 and radon concentrations, as well as outdoor particle number were measured within school hours during the winter and spring season. The study found the concentrations of indoor particle number were influenced by the concentrations in the outdoors; highest BC values were detected in classrooms during peak traffic time. The effect of different seasons' airing mode on the indoor air quality was also detected. The ratio between indoor and outdoor particles was of 0.85 ± 0.10 in winter, under airing conditions of short opening window periods, and 1.00 ± 0.15 in spring when the windows were opened for longer periods. This was associated to a higher degree of penetration of outdoor particles due to longer period of window opening. Lower CO2 levels were found in classrooms in spring (908 ppm) than in winter (2206 ppm). Additionally, a greater reduction in radon concentrations was found in spring. In addition, high PM10 levels were found in classrooms during break time due to re-suspension of coarse particles. OPEN ACCESSAtmosphere 2015, 6 1653
Abstract:Energy planning has become one of the most powerful tools for urban planning even if several constraints, (i.e., aesthetic, archaeological, landscape) and technological (low diffusion of Renewable Energy Sources, RES) reduce its spreading. An efficient and sustainable urban planning process should be based on detailed energy issues, such as: (i) the effective energetic characteristics and needs of the area like urban density and energy consumption, (ii) the integration of different RES and (iii) the diffusion of high efficiency technologies for energy production like cogeneration and district heating. The above-mentioned energetic issues and constraints must be constantly updated, in order to evaluate the consequences on environment and landscape due to new distributed generation technologies. Moreover, energy strategies and policies must be adapted to the actual evolution of the area. In this paper the authors present a Geographical Information Database System (GIS DB) based on: (i) the availability of land use (Land Capability Classification, LCC) to evaluate the productive potential; (ii) the estimation of residential energy consumptions (e.g., electricity), (iii) the integration of RES. The GIS DB model has been experimented in a wide area of Central Italy, considering exclusively the solar energy source for energy generation. OPEN ACCESSSustainability 2014, 6 5731
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.