Quantitative systems pharmacology (QSP) models aim to describe mechanistically the pathophysiology of disease and predict the effects of therapies on that disease. For most drug development applications, it is important to predict not only the mean response to an intervention but also the distribution of responses, due to inter-patient variability. Given the necessary complexity of QSP models, and the sparsity of relevant human data, the parameters of QSP models are often not well determined. One approach to overcome these limitations is to develop alternative virtual patients (VPs) and virtual populations (Vpops), which allow for the exploration of parametric uncertainty and reproduce inter-patient variability in response to perturbation. Here we evaluated approaches to improve the efficiency of generating Vpops. We aimed to generate Vpops without sacrificing diversity of the VPs' pathophysiologies and phenotypes. To do this, we built upon a previously published approach (Allen et al., 2016) by (a) incorporating alternative optimization algorithms (genetic algorithm and Metropolis-Hastings) or alternatively (b) augmenting the optimized objective function. Each method improved the baseline algorithm by requiring significantly fewer plausible patients (precursors to VPs) to create a reasonable Vpop.
The advantages of intelligent approaches such as the conjunction of artificial vision and the use of Unmanned Aerial Vehicles (UAVs) have been recently emerging. This paper presents a focused on obtaining scans of large areas of livestock system. Counting and monitoring of animal species can be performed with video recordings taken from UAVs. Moreover the system keeps track of the number of animals detected by analyzing the images taken with the UAVs cameras. Several tests have been performed to evaluate this system and preliminary results and the conclusions are presented in this paper.
This work presents a system for automatically evaluating the interaction that exists between the atmosphere and the ocean's surface. Monitoring and evaluating the ocean's carbon exchange process is a function that requires working with a great amount of data: satellite images and in situ vessel's data. The system presented in this study focuses on computational intelligence. The study presents an intelligent system based on the use of case-based reasoning (CBR) systems and offers a distributed model for such an interaction. Moreover, the system takes into account the fact that the working environment is dynamic and therefore it requires autonomous models that evolve over time. In order to resolve this problem, an intelligent environment has been developed, based on the use of CBR systems, which are capable of handling several goals, by constructing plans from the data obtained through satellite images and research vessels, acquiring knowledge and adapting to environmental changes. The artificial intelligence system has been successfully tested in the North Atlantic Ocean, and the results obtained will be presented in this study.
22Quantitative systems pharmacology (QSP) models aim to describe mechanistically 23 the pathophysiology of disease and predict the effects of therapies on that disease. 24For most drug development applications, it is important to predict not only the 25 mean response to an intervention but also the distribution of responses, due to 26 inter-patient variability. Given the necessary complexity of QSP models, and the 27 sparsity of relevant human data, the parameters of QSP models are often not well 28 determined. . CC-BY-ND 4.0 International license It is made available under a (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
The exchange of CO2 between the atmosphere and the ocean surface is a problem that has become increasingly important due to its impact on climatic behavior. Given the large quantity of sources of information available for studying the CO2 problem, it is necessary to provide innovative solutions that facilitate the automation of certain tasks and incorporate decision support systems to obtain a better understanding of this phenomenon. This paper presents a multiagent architecture aimed at providing solutions for monitoring the interaction between the atmosphere and the ocean. The ocean surface and the atmosphere exchange carbon dioxide. This process is can be modeled by a multiagent system with advanced learning and adaption capabilities. The proposed multiagent architecture incorporates CBR-agents that integrate novel strategies that both monitor the parameters that affect the interaction, and facilitate the creation of models. The system was tested and this paper presents the results obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.