The state of water quality of lakes is highly related to watershed processes which will be responsible for the delivery of sediment, nutrients, and other pollutants to receiving water bodies. The spatiotemporal variability of water quality parameters along with the seasonal changes were studied for Lake Okeechobee, South Florida. The dynamics of selected four water quality parameters: total phosphate (TP), total Kjeldahl nitrogen (TKN), total suspended solid (TSS), and chlorophyll-a (chl-a) were analyzed using data from satellites and water quality monitoring stations. Statistical approaches were used to establish correlation between reflectance and observed water quality records. Landsat Thematic Mapper (TM) data (2000 and 2007) and Landsat Operational Land Imager (OLI) in 2015 in dry and wet seasons were used in the analysis of water quality variability in Lake Okeechobee. Water quality parameters were collected from twenty-six (26) monitoring stations for model development and validation. In the regression model developed, individual bands, band ratios and various combination of bands were used to establish correlation, and hence generate the models. A stepwise multiple linear regression (MLR) approach was employed and the results showed that for the dry season, higher coefficient of determination (R2) were found (R2 = 0.84 for chl-a and R2 = 0.67 for TSS) between observed water quality data and the reflectance data from the remotely-sensed data. For the wet season, the R2 values were moderate (R2 = 0.48 for chl-a and R2 = 0.60 for TSS). It was also found that strong correlation was found for TP and TKN with chl-a, TSS, and selected band ratios. Total phosphate and TKN were estimated using best-fit multiple linear regression models as a function of reflectance data from Landsat TM and OLI, and ground data. This analysis showed a high coefficient of determination in dry season (R2 = 0.92 for TP and R2 = 0.94 for TKN) and in wet season (R2 = 0.89 for TP and R2 = 0.93 for TKN). Based on the findings, the Multiple linear regression (MLR) model can be a useful tool for monitoring large lakes like Lake Okeechobee and also predict the spatiotemporal variability of both optically active (Chl-a and TSS) and inactive water (nutrients) quality parameters.
Anthropogenic developments in coastal watersheds cause significant ecological changes to estuaries. Since estuaries respond to inputs on relatively long time scales, robust analyses of long-term data should be employed to account for seasonality, internal cycling, and climatological cycles. This study characterizes the water quality of a highly managed coastal basin, the St. Lucie Estuary Basin, FL, USA, from 1999 to 2019 to detect spatiotemporal differences in the estuary’s water quality and its tributaries. The estuary is artificially connected to Lake Okeechobee, so it receives fresh water from an external basin. Monthly water samples collected from November 1999 to October 2019 were assessed using principal component analysis, correlation analysis, and the Seasonal Kendall trend test. Nitrogen, phosphorus, color, total suspended solids, and turbidity concentrations varied seasonally and spatially. Inflows from Lake Okeechobee were characterized by high turbidity, while higher phosphorus concentrations characterized inflows from tributaries within the basin. Differences among tributaries within the basin may be attributed to flow regimes (e.g., significant releases vs. steady flow) and land use (e.g., pasture vs. row crops). Decreasing trends for orthophosphate, total phosphorus, and color and increasing trends for dissolved oxygen were found over the long term. Decreases in nutrient concentrations over time could be due to local mitigation efforts. Understanding the differences in water quality between the tributaries of the St. Lucie Estuary is essential for the overall water quality management of the estuary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.