A Global Irrigated Area Map (GIAM) has been produced for the end of the last millennium using multiple satellite sensor, secondary, Google Earth and groundtruth data. The data included: (a) Advanced Very High Resolution Radiometer (AVHRR) 3-band and Normalized Difference Vegetation Index (NDVI) 10 km monthly time-series for 1997-1999, (b) Syste`me pour l'Observation de la Terre Vegetation (SPOT VGT) NDVI 1 km monthly time series for 1999, (c) East Anglia University Climate Research Unit (CRU) rainfall 50km monthly time series for 1961-2000, (d) Global 30 Arc-Second Elevation Data Set (GTOPO30) 1 km digital elevation data of the World, (e) Japanese Earth Resources Satellite-1 Synthetic Aperture Radar (JERS-1 SAR) data for the rain forests during two seasons in 1996 and (f) University of Maryland Global Tree Cover 1 km data for 1992-1993. A single mega-file data-cube (MFDC) of the World with 159 layers, akin to hyperspectral data, was composed by re-sampling different data types into a common 1 km resolution. The MFDC was segmented based on elevation, temperature and precipitation zones. Classification was performed on the segments. Quantitative spectral matching techniques (SMTs) used in hyperspectral data analysis were adopted to group class spectra derived from unsupervised classification and match them with ideal or target spectra. A rigorous class identification and labelling process involved the use of: (a) space-time spiral curve (ST-SC) plots, (b) brightness-greenness-wetness (BGW) plots, (c) time series NDVI plots, (d) Google Earth very-high-resolution imagery (VHRI) 'zoom-in views' in over 11 000 locations, (e) groundtruth data broadly sourced from the degree confluence project (3 864 sample locations) and from the GIAM project (1 790 sample locations), (f) high-resolution Landsat-ETM+ Geocover 150m mosaic of the World and (g) secondary data (e.g. national and global land use and land cover data). Mixed classes were resolved based on decision tree algorithms and spatial modelling, and when that did not work, the problem class was used to mask and re-classify the MDFC, and the class identification and labelling protocol repeated. The sub-pixel area (SPA) calculations were performed by multiplying full-pixel areas (FPAs) with irrigated area fractions (IAFs) for every class. A 28 class GIAMwas produced and the area statistics reported as: (a) annualized irrigated areas (AIAs), which consider intensity of irrigation (i.e. sum of irrigated areas from different seasons in a year plus continuous year-round irrigation or gross irrigated areas), and (b) total area available for irrigation (TAAI), which does not consider intensity of irrigation (i.e. irrigated areas at any given point of time plus the areas left fallow but 'equipped for irrigation' at the same point of time or net irrigated areas). The AIA of the World at the end of the last millennium was 467million hectares (Mha), which is sum of the non-overlapping areas of: (a) 252Mha from season one, (b) 174Mha from season two and (c) 41Mha from continuous yea...
The overarching goal of this paper was to espouse methods and protocols for water productivity mapping (WPM) using high spatial resolution Landsat remote sensing data. In a world where land and water for agriculture are becoming increasingly scarce, growing “more crop per drop” (increasing water productivity) becomes crucial for food security of future generations. The study used time-series Landsat ETM+ data to produce WPMs of irrigated crops, with emphasis on cotton in the Galaba study area in the Syrdarya river basin of Central Asia. The WPM methods and protocols using remote sensing data consisted of: (1) crop productivity (ton/ha) maps (CPMs) involving crop type classification, crop yield and biophysical modeling, and extrapolating yield models to larger areas using remotely sensed data; (2) crop water use (m3/ha) maps (WUMs) (or actual seasonal evapotranspiration or actual ET) developed through Simplified Surface Energy Balance (SSEB) model; and (3) water productivity (kg/m3) maps (WPMs) produced by dividing raster layers of CPMs by WUMs. The SSEB model calculated WUMs (actual ET) by multiplying the ET fraction by reference ET. The ET fraction was determined using Landsat thermal imagery by selecting the “hot” pixels (zero ET) and “cold” pixels (maximum ET). The grass reference ET was calculated by FAO Penman-Monteith method using meteorological data. The WPMs for the Galaba study area demonstrated a wide variations (0-0.54 kg/m3) in water productivity of cotton fields with overwhelming proportion (87%) of the area having WP less than 0.30 kg/m3, 11% of the area having WP in range of 0.30-0.36 kg/m3, and only 2% of the area with WP greater than 0.36 kg/m3. These results clearly imply that there are opportunities for significant WP increases in overwhelming proportion of the existing croplands. The areas of low WP are spatially pin-pointed and can be used as focus for WP improvements through better land and water management practices.
Anthropogenic developments in coastal watersheds cause significant ecological changes to estuaries. Since estuaries respond to inputs on relatively long time scales, robust analyses of long-term data should be employed to account for seasonality, internal cycling, and climatological cycles. This study characterizes the water quality of a highly managed coastal basin, the St. Lucie Estuary Basin, FL, USA, from 1999 to 2019 to detect spatiotemporal differences in the estuary’s water quality and its tributaries. The estuary is artificially connected to Lake Okeechobee, so it receives fresh water from an external basin. Monthly water samples collected from November 1999 to October 2019 were assessed using principal component analysis, correlation analysis, and the Seasonal Kendall trend test. Nitrogen, phosphorus, color, total suspended solids, and turbidity concentrations varied seasonally and spatially. Inflows from Lake Okeechobee were characterized by high turbidity, while higher phosphorus concentrations characterized inflows from tributaries within the basin. Differences among tributaries within the basin may be attributed to flow regimes (e.g., significant releases vs. steady flow) and land use (e.g., pasture vs. row crops). Decreasing trends for orthophosphate, total phosphorus, and color and increasing trends for dissolved oxygen were found over the long term. Decreases in nutrient concentrations over time could be due to local mitigation efforts. Understanding the differences in water quality between the tributaries of the St. Lucie Estuary is essential for the overall water quality management of the estuary.
The overarching goal of this research was to map crop water productivity using satellite sensor data at various spectral, spatial, radiometric, and temporal resolutions involving: (a) Moderate Resolution Imaging Spectroradiometer (MODIS) 500m, (b) MODIS 250m, (c) Landsat enhanced thematic mapper plus (ETM+) 60m thermal, (d) Indian Remote Sensing Satellite (IRS) 23.5 m, and (e) Quickbird 2.44 m data. The spectro-biophysical models were developed using IRS and Quickbird satellite data for wet biomass, dry biomass, leaf area index, and grain yield for 5 crops: (a) cotton, (b) maize, (c) winter wheat, (d) rice, and (e) alfalfa in the Sry Darya basin, Central Asia. Crop-specific productivity maps were developed by applying the best spectro-biophysical models for the respective delineated crop types. Water use maps were produced using simplified surface energy balance (SSEB) model by multiplying evaporative fraction derived from Landsat ETM+ thermal data by potential ET. The water productivity (WP) maps were then derived by dividing the crop productivity maps by water use maps. The results of cotton crop, an overwhelmingly predominant crop in Central Asian Study area, showed that about 55% area had low WP of < 0.3 kg/m 3 , 34% had moderate WP of 0.3-0.4 kg/m 3 , and only 11% area had high WP > 0.4 kg/m 3 . The trends were similar for other crops. These results indicated that there is highly significant scope to increase WP (to grow "more crop per drop") through better water and cropland management practices in the low WP areas, which will substantially enhance food security of the ballooning populations without having to increase: (a) cropland areas, and\or (b) irrigation water allocations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.